已知之間滿足 

(1)方程表示的曲線經(jīng)過一點(diǎn),求b的值

(2)動(dòng)點(diǎn)(x,y)在曲線(b>0)上高考資源網(wǎng)變化,求x2+2y的最大值;

(3)由能否確定一個(gè)函數(shù)關(guān)系式,如能,求解析式;如不能,再加什么條件就可使之間建立函數(shù)關(guān)系,并求出解析式。

(1)    (2)  (3)不能                                                

   如再加條件就可使之間建立函數(shù)關(guān)系 解析式


解析:

(1)                      (4分)

(2)根據(jù)                 (5分)

           (7分)

                                                                  (10分)

(3)不能,如再加條件就可使之間建立函數(shù)關(guān)系            (12分)

解析式                               (14分)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•月湖區(qū)模擬)①(極坐標(biāo)與參數(shù)方程選講選做題)已知點(diǎn)P(1+cosα,sinα),參數(shù)α∈[0,π],點(diǎn)Q在曲線C:ρ=
9
2
sin(θ+
π
4
)
上,則點(diǎn)P與點(diǎn)Q之間距離的最小值為
4
2
-1
4
2
-1

②(不等式選講選做題)若存在實(shí)數(shù)x滿足|x-3|+|x-m|<5,則實(shí)數(shù)m的取值范圍是
(-2,8)
(-2,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•青島一模)在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(-1,0),B(1,0),動(dòng)點(diǎn)C滿足:△ABC的周長(zhǎng)為2+2
2
,記動(dòng)點(diǎn)C的軌跡為曲線W.
(Ⅰ)求W的方程;
(Ⅱ)曲線W上是否存在這樣的點(diǎn)P:它到直線x=-1的距離恰好等于它到點(diǎn)B的距離?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(Ⅲ)設(shè)E曲線W上的一動(dòng)點(diǎn),M(0,m),(m>0),求E和M兩點(diǎn)之間的最大距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知之間滿足

(1)方程表示的曲線經(jīng)過一點(diǎn),求b的值

(2)動(dòng)點(diǎn)(x,y)在曲線(b>0)上變化,求x2+2y的最大值;

(3)由能否確定一個(gè)函數(shù)關(guān)系式,如能,求解析式;如不能,再加什么條件就可使之間建立函數(shù)關(guān)系,并求出解析式。

                               (

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010年上海市華東師大二附中高三數(shù)學(xué)綜合練習(xí)試卷(07)(解析版) 題型:解答題

已知x、y之間滿足
(1)方程表示的曲線經(jīng)過一點(diǎn),求b的值
(2)動(dòng)點(diǎn)(x,y)在曲線(b>0)上變化,求x2+2y的最大值;
(3)由能否確定一個(gè)函數(shù)關(guān)系式y(tǒng)=f(x),如能,求解析式;如不能,再加什么條件就可使x、y之間建立函數(shù)關(guān)系,并求出解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案