【題目】已知數(shù)列{an}滿足a1=1,且anan+1=2n , n∈N* , 則數(shù)列{an}的通項公式為(
A.an=( n1
B.an=( n
C.an=
D.an=

【答案】D
【解析】解:∵數(shù)列{an}滿足a1=1,且anan+1=2n , n∈N* ,
∴an+1an+2=2n+1 ,
兩式相比得 =2,即數(shù)列中的奇數(shù)項是以1為首項,2為公比的等比數(shù)列,
即當(dāng)n是奇數(shù)時,an=( n1
偶數(shù)項是以a2=2為首項,2為公比的等比數(shù)列,
則當(dāng)n是偶數(shù)時,an=2( n1=( n ,
故數(shù)列的通項公式an= ,
故選:D.
【考點精析】本題主要考查了數(shù)列的定義和表示和數(shù)列的通項公式的相關(guān)知識點,需要掌握數(shù)列中的每個數(shù)都叫這個數(shù)列的項.記作an,在數(shù)列第一個位置的項叫第1項(或首項),在第二個位置的叫第2項,……,序號為n的項叫第n項(也叫通項)記作an;如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2cos2ωx+ sin2ωx(ω>0)的最小正周期為π,給出下列四個命題:
①f(x)的最大值為3;
②將f(x)的圖象向左平移 后所得的函數(shù)是偶函數(shù);
③f(x)在區(qū)間[﹣ ]上單調(diào)遞增;
④f(x)的圖象關(guān)于直線x= 對稱.
其中正確說法的序號是(
A.②③
B.①④
C.①②④
D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場對顧客實行購物優(yōu)惠活動,規(guī)定一次購物付款總額:

(1)如果不超過200元,則不給予優(yōu)惠;

(2)如果超過200元但不超過500元,則按標(biāo)價給予9折優(yōu)惠;

(3)如果超過500元,其500元內(nèi)的按第(2)條給予優(yōu)惠,超過500元的部分給予7折優(yōu)惠.

某人單獨購買AB商品分別付款168元和423元,假設(shè)他一次性購買AB兩件商品,則應(yīng)付款是

A. 413.7B. 513.7C. 546.6D. 548.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的一條切線,切點為B,直線ADE、CFD、CGE都是⊙O的割線,已知AC=AB.

(1)若CG=1,CD=4.求 的值.
(2)求證:FG∥AC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在實數(shù)集上的奇函數(shù),當(dāng)時, ,若集合,則實數(shù)的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,已知拋物線:,拋物線的準(zhǔn)線與交于點

(1)過作曲線的切線,設(shè)切點為 ,證明:以為直徑的圓經(jīng)過點;

(2)過點作互相垂直的兩條直線、, 與曲線交于兩點, 與曲線交于、兩點,線段, 的中點分別為、,試討論直線是否過定點?若過,求出定點的坐標(biāo);若不過,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=x3+mlog2(x+ )(m∈R,m>0),則不等式f(m)+f(m2﹣2)≥0的解是 . (注:填寫m的取值范圍)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)

(1)當(dāng)q=1時,求f(x)在[﹣1,9]上的值域;

(2)問:是否存在常數(shù)q(0<q<10),使得當(dāng)x[q,10]時,f(x)的最小值為﹣51?若存在,求出q的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公司生產(chǎn)一種電子儀器的固定成本為20000元,每生產(chǎn)一臺儀器需增加投入100元,已知總收益滿足函數(shù):

其中 x 是儀器的月產(chǎn)量.

(1)將利潤表示為月產(chǎn)量 的函數(shù);

(2)當(dāng)月產(chǎn)量 為何值時,公司所獲利潤最大?最大利潤是多少元?(總收益=總成本+利潤)

查看答案和解析>>

同步練習(xí)冊答案