【題目】在某大學(xué)自主招生考試中,所有選報(bào)Ⅱ類志向的考生全部參加了“數(shù)學(xué)與邏輯”和“閱讀與表達(dá)”兩個(gè)科目的考試,成績(jī)分為A,B,C,D,E五個(gè)等級(jí).某考場(chǎng)考生的兩科考試成績(jī)的數(shù)據(jù)統(tǒng)計(jì)如圖所示,其中“數(shù)學(xué)與邏輯”科目的成績(jī)?yōu)锽的考生有10人.
(Ⅰ)求該考場(chǎng)考生中“閱讀與表達(dá)”科目中成績(jī)?yōu)锳的人數(shù);
(Ⅱ)若等級(jí)A,B,C,D,E分別對(duì)應(yīng)5分,4分,3分,2分,1分,求該考場(chǎng)考生“數(shù)學(xué)與邏輯”科目的平均分;
(Ⅲ)已知參加本考場(chǎng)測(cè)試的考生中,恰有兩人的兩科成績(jī)均為A.在至少一科成績(jī)?yōu)锳的考生中,隨機(jī)抽取兩人進(jìn)行訪談,求這兩人的兩科成績(jī)均為A的概率.
【答案】解:(Ⅰ)因?yàn)椤皵?shù)學(xué)與邏輯”科目中成績(jī)等級(jí)為B的考生有10人, 所以該考場(chǎng)有10÷0.25=40人,
所以該考場(chǎng)考生中“閱讀與表達(dá)”科目中成績(jī)等級(jí)為A的人數(shù)為:
40×(1﹣0.375﹣0.375﹣0.15﹣0.025)=40×0.075=3人;
(Ⅱ)該考場(chǎng)考生“數(shù)學(xué)與邏輯”科目的平均分為:
×[1×(40×0.2)+2×(40×0.1)+3×(40×0.375)+4×(40×0.25)+5×(40×0.075)]=2.9;
(Ⅲ)因?yàn)閮煽瓶荚囍,共?人得分等級(jí)為A,又恰有兩人的兩科成績(jī)等級(jí)均為A,
所以還有2人只有一個(gè)科目得分為A,
設(shè)這四人為甲,乙,丙,丁,其中甲,乙是兩科成績(jī)都是A的同學(xué),
則在至少一科成績(jī)等級(jí)為A的考生中,隨機(jī)抽取兩人進(jìn)行訪談,基本事件空間為:
Ω={{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁},{丙,丁}},一共有6個(gè)基本事件.
設(shè)“隨機(jī)抽取兩人進(jìn)行訪談,這兩人的兩科成績(jī)等級(jí)均為A”為事件B,所以事件B中包含的基本事件有1個(gè),
則P(B)=
【解析】(Ⅰ)根據(jù)“數(shù)學(xué)與邏輯”科目中成績(jī)等級(jí)為B的考生人數(shù),結(jié)合樣本容量=頻數(shù)÷頻率得出該考場(chǎng)考生人數(shù),再利用頻率和為1求出等級(jí)為A的頻率,從而得到該考場(chǎng)考生中“閱讀與表達(dá)”科目中成績(jī)等級(jí)為A的人數(shù).(Ⅱ)利用平均數(shù)公式即可計(jì)算該考場(chǎng)考生“數(shù)學(xué)與邏輯”科目的平均分.(Ⅲ)通過(guò)列舉的方法計(jì)算出選出的2人所有可能的情況及這兩人的兩科成績(jī)等級(jí)均為A的情況;利用古典概型概率公式求出隨機(jī)抽取兩人進(jìn)行訪談,這兩人的兩科成績(jī)等級(jí)均為A的概率.
【考點(diǎn)精析】利用平均數(shù)、中位數(shù)、眾數(shù)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知⑴平均數(shù)、眾數(shù)和中位數(shù)都是描述一組數(shù)據(jù)集中趨勢(shì)的量;⑵平均數(shù)、眾數(shù)和中位數(shù)都有單位;⑶平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個(gè)數(shù)都有關(guān)系,所以最為重要,應(yīng)用最廣;⑷中位數(shù)不受個(gè)別偏大或偏小數(shù)據(jù)的影響;⑸眾數(shù)與各組數(shù)據(jù)出現(xiàn)的頻數(shù)有關(guān),不受個(gè)別數(shù)據(jù)的影響,有時(shí)是我們最為關(guān)心的數(shù)據(jù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x+1|﹣|x|+a.
(1)若a=0,求不等式f(x)≥x的解集;
(2)若對(duì)任意x∈R,f(x)≥0恒成立,求a的范圍;
(3)若方程f(x)=x有三個(gè)不同的解,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)設(shè),求的值;
(2)已知cos(75°+α),且﹣180°<α<﹣90°,求cos(15°﹣α)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某幾何體的正視圖與側(cè)視圖都是邊長(zhǎng)為1的正方形,且體積為 .則該幾何體的俯視圖可以是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓E: + =1(a>b>0)的離心率e= ,并且經(jīng)過(guò)定點(diǎn)P( , ). (Ⅰ)求橢圓E的方程;
(Ⅱ)問(wèn)是否存在直線y=﹣x+m,使直線與橢圓交于A、B兩點(diǎn),滿足 = ,若存在求m值,若不存在說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)招聘大學(xué)畢業(yè)生,經(jīng)過(guò)綜合測(cè)試,錄用了14名女生和6名男生,這20名學(xué)生的測(cè)試成績(jī)?nèi)缜o葉圖所示(單位:分),記成績(jī)不小于80分者為等,小于80分者為等.
(1)求女生成績(jī)的中位數(shù)及男生成績(jī)的平均數(shù);
(2)如果用分層抽樣的方法從等和等中共抽取5人組成“創(chuàng)新團(tuán)隊(duì)”,則從等和等中分別抽幾人?
(3)在(2)問(wèn)的基礎(chǔ)上,現(xiàn)從該“創(chuàng)新團(tuán)隊(duì)”中隨機(jī)抽取2人,求至少有1人是等的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)常數(shù)使方程在區(qū)間上恰有三個(gè)解且,則實(shí)數(shù)的值為( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)O是坐標(biāo)原點(diǎn),橢圓C:x2+3y2=6的左右焦點(diǎn)分別為F1 , F2 , 且P,Q是橢圓C上不同的兩點(diǎn), (Ⅰ)若直線PQ過(guò)橢圓C的右焦點(diǎn)F2 , 且傾斜角為30°,求證:|F1P|、|PQ|、|QF1|成等差數(shù)列;
(Ⅱ)若P,Q兩點(diǎn)使得直線OP,PQ,QO的斜率均存在.且成等比數(shù)列.求直線PQ的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐的底面是正方形,底面ABCD,點(diǎn)E在棱PB上.
求證:平面平面PDB;
當(dāng),且E為PB的中點(diǎn)時(shí),求AE與平面PDB所成的角的大。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com