【題目】已知函數(shù)f(x)=|x+1|﹣|x|+a.
(1)若a=0,求不等式f(x)≥x的解集;
(2)若對(duì)任意x∈R,f(x)≥0恒成立,求a的范圍;
(3)若方程f(x)=x有三個(gè)不同的解,求實(shí)數(shù)a的取值范圍.

【答案】
(1)解:a=0,不等式f(x)≥x化為不等式|x+1|﹣|x|≥x.

x≤﹣1時(shí),﹣x﹣1+x≥x,∴x≤﹣1;

﹣1<x<0時(shí),x+1+x≥x,∴﹣1<x<0;

x≥0時(shí),x+1﹣x≥x,∴0≤x≤1;

綜上所述,不等式f(x)≥x的解集為{x|x≤1}


(2)解:若對(duì)任意x∈R,f(x)≥0恒成立,|x|﹣|x+1|≤a恒成立,

∵|x|﹣|x+1|≤|x﹣x﹣1|=1,∴a≥1


(3)解:設(shè)u(x)=|x+1|﹣|x|,y=u(x)的圖象和y=x的圖象如圖所示.

易知y=u(x)的圖象向下平移1個(gè)單位以內(nèi)(不包括1個(gè)單位),與y=x的圖象始終有3個(gè)交點(diǎn),

從而﹣1<a<0.

所以實(shí)數(shù)a的取值范圍為(﹣1,0)


【解析】(1)若a=0,不等式f(x)≥x化為不等式|x+1|﹣|x|≥x,分類討論,即可求得f(x)≥x的解集;(2)若對(duì)任意x∈R,f(x)≥0恒成立,|x|﹣|x+1|≤a恒成立,求出左邊的最大值,即可求a的范圍;(3)u(x)=|x+1|﹣|x|,做出y=u(x)和y=x的圖象,方程f(x)=x恰有三個(gè)不同的實(shí)根,轉(zhuǎn)化成y=u(x)與y=x的圖象始終有3個(gè)交點(diǎn),根據(jù)函數(shù)圖象即可求得實(shí)數(shù)a的取值范圍.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解絕對(duì)值不等式的解法的相關(guān)知識(shí),掌握含絕對(duì)值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對(duì)值的符號(hào).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)在頸椎病患者越來(lái)越多,甚至大學(xué)生也出現(xiàn)了頸椎病,年輕人患頸椎病多與工作、生活方式有關(guān),某調(diào)查機(jī)構(gòu)為了了解大學(xué)生患有頸椎病是否與長(zhǎng)期過(guò)度使用電子產(chǎn)品有關(guān),在遂寧市中心醫(yī)院隨機(jī)的對(duì)入院的50名大學(xué)生進(jìn)行了問(wèn)卷調(diào)查,得到了如下的4×4列聯(lián)表:

未過(guò)度使用

過(guò)度使用

合計(jì)

未患頸椎病

15

5

20

患頸椎病

10

20

30

合計(jì)

25

25

50

(1)是否有99.5%的把握認(rèn)為大學(xué)生患頸錐病與長(zhǎng)期過(guò)度使用電子產(chǎn)品有關(guān)?

(2)已知在患有頸錐病的10名未過(guò)度使用電子產(chǎn)品的大學(xué)生中,有3名大學(xué)生又患有腸胃炎,現(xiàn)在從上述的10名大學(xué)生中,抽取3名大學(xué)生進(jìn)行其他方面的排查,記選出患腸胃炎的學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.

參考數(shù)據(jù)與公式:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知下列命題:

①在線性回歸模型中,相關(guān)指數(shù)越接近于1,表示回歸效果越好;

②兩個(gè)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)r就越接近于1;

③在回歸直線方程中,當(dāng)解釋變量每增加一個(gè)單位時(shí),預(yù)報(bào)變量平均減少0.5個(gè)單位;

④兩個(gè)模型中殘差平方和越小的模型擬合的效果越好.

⑤回歸直線恒過(guò)樣本點(diǎn)的中心,且至少過(guò)一個(gè)樣本點(diǎn);

⑥若的觀測(cè)值滿足≥6.635,我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系,那么在100個(gè)吸煙的人中必有99人患有肺;

⑦從統(tǒng)計(jì)量中得知有95%的把握認(rèn)為吸煙與患肺病有關(guān)系,是指有5%的可能性使得推斷出現(xiàn)錯(cuò)誤. 其中正確命題的序號(hào)是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題p:“x∈[0,1],a≥ex”;命題q:“x0∈R,x +4x0+a=0”.若命題“p∧q”是假命題,則實(shí)數(shù)a的取值范圍是(
A.(﹣∞,4]
B.(﹣∞,1)∪(4,+∞)
C.(﹣∞,e)∪(4,+∞)
D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[2019·武漢六中]袋子中有四個(gè)小球,分別寫有“武、漢、軍、運(yùn)”四個(gè)字,從中任取一個(gè)小球,有放回抽取,直到取到“軍”“運(yùn)”二字就停止,用隨機(jī)模擬的方法估計(jì)恰好在第三次停止的概率:利用電腦隨機(jī)產(chǎn)生0到3之間取整數(shù)值的隨機(jī)數(shù),分別用0,1,2,3代表“軍、運(yùn)、武、漢”這四個(gè)字,以每三個(gè)隨機(jī)數(shù)為一組,表示取球三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下16組隨機(jī)數(shù):

232 321 230 023 123 021 132 220

231 130 133 231 331 320 122 233

由此可以估計(jì),恰好第三次就停止的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax2-(a+2)x+lnx

(1)當(dāng)a=1時(shí),求曲線yf(x)在點(diǎn)(1,f(1))處的切線方程;

(2)若對(duì)任意x1x2∈(0,+∞),x1x2,有f(x1)+2x1f(x2)+2x2恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:

甲說(shuō):“作品獲得一等獎(jiǎng)”;

乙說(shuō):“作品獲得一等獎(jiǎng)”;

丙說(shuō):“, 兩項(xiàng)作品未獲得一等獎(jiǎng)”;

丁說(shuō):“作品獲得一等獎(jiǎng)”.

若這四位同學(xué)只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列命題:

①正切函數(shù)圖象的對(duì)稱中心是唯一的;

②若函數(shù)的圖像關(guān)于直線對(duì)稱,則這樣的函數(shù)是不唯一的;

③若,是第一象限角,且,則;

④若是定義在上的奇函數(shù),它的最小正周期是,則

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某大學(xué)自主招生考試中,所有選報(bào)Ⅱ類志向的考生全部參加了“數(shù)學(xué)與邏輯”和“閱讀與表達(dá)”兩個(gè)科目的考試,成績(jī)分為A,B,C,D,E五個(gè)等級(jí).某考場(chǎng)考生的兩科考試成績(jī)的數(shù)據(jù)統(tǒng)計(jì)如圖所示,其中“數(shù)學(xué)與邏輯”科目的成績(jī)?yōu)锽的考生有10人.
(Ⅰ)求該考場(chǎng)考生中“閱讀與表達(dá)”科目中成績(jī)?yōu)锳的人數(shù);
(Ⅱ)若等級(jí)A,B,C,D,E分別對(duì)應(yīng)5分,4分,3分,2分,1分,求該考場(chǎng)考生“數(shù)學(xué)與邏輯”科目的平均分;
(Ⅲ)已知參加本考場(chǎng)測(cè)試的考生中,恰有兩人的兩科成績(jī)均為A.在至少一科成績(jī)?yōu)锳的考生中,隨機(jī)抽取兩人進(jìn)行訪談,求這兩人的兩科成績(jī)均為A的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案