設(shè)實數(shù)x,y滿足不等式組
(x-y)(x+y-5)≥0
1≤x≤4
,則z=2x+y的最大值為
 
考點:簡單線性規(guī)劃
專題:作圖題,不等式的解法及應(yīng)用
分析:作出題中不等式組表示的平面區(qū)域,得如圖的陰影部分,再將目標(biāo)函數(shù)z=2x+y對應(yīng)的直線進(jìn)行平移,可得當(dāng)x=y=時,目標(biāo)函數(shù)z=2x+y取得最大值.
解答: 解:作出不等式組
(x-y)(x+y-5)≥0
1≤x≤4
表示的平面區(qū)域,
得到直線y-x=0的下方且在直線x+y-7=0的上方,即如圖的陰影部分,
設(shè)z=2x+y,將直線l:z=2x+y進(jìn)行平移,
當(dāng)l經(jīng)過
x=4
x-y=0
,解得點A(4,4)時,
目標(biāo)函數(shù)z達(dá)到最大值
∴z最大值=2×4+4=12
故答案為:12.
點評:本題給出二元一次不等式組,求目標(biāo)函數(shù)z=2x+y的最大值,著重考查了二元一次不等式組表示的平面區(qū)域和簡單的線性規(guī)劃等知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)計一個算法,根據(jù)輸入x的值,計算y=
3x-1x≥1
1-3xx<1
的值,寫其程序并畫出其流程圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知變量x,y滿足
2x-y≤0
x-2y+3≥0
x≥0
,則2x+y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x、y滿足條件
2x-y-1≤0
2x+y+1≥0
y≤x+1
,則z=x+3y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x,y滿足約束條件
x-4y≤-3
3x+5y≤25
x≥1
,那么z=3x+y+5的最大值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:①若函數(shù)f(x)=
(3a-1)x+4a,x<1
logax,x≥1
在(-∞,+∞)上是減函數(shù),則a的取值范圍是(0,
1
3
)
;②若函數(shù)f(x)滿足f(x+1)=f(3-x),則f(x)的圖象關(guān)于直線x=2對稱;③函數(shù)y=f(x+1)與函數(shù)y=f(3-x)的圖象關(guān)于直線x=2對稱;④若函數(shù)f(x+2013)=x2-2x-1(x∈R),則f(x)的最小值為-2.其中正確命題的序號有
 
(把所有正確命題的序號都寫上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)1+
3
i
與復(fù)數(shù)-
3
+i
在復(fù)平面上的對應(yīng)點分別是A,B,O為坐標(biāo),則∠AOB等于( 。
A、
π
6
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x,y滿足
x-2y+1≥0
|x|-y-1≤0
,則z=2x+y的最大值為(  )
A、4B、6C、8D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線(m+2)x+(m+1)y+1=0上存在點(x,y)滿足
x+y-3≤0
x-2y-3≤0
x≥1
,則m的取值范圍為( 。
A、[-
5
3
,+∞)
B、(-∞,-
5
3
]
C、[-1,
1
2
]
D、[-
1
4
,
1
2
]

查看答案和解析>>

同步練習(xí)冊答案