19.雙曲線$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1的焦距為10.

分析 求出雙曲線的長,即可求解焦距.

解答 解:雙曲線$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1的實半軸與a=4,虛半軸b=3,焦距為2c=2$\sqrt{{4}^{2}+{3}^{2}}$=10.
故答案為:10.

點評 本題考查雙曲線的簡單性質(zhì)的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知f(x)=m(x-3m)(x+m+3),g(x)=2x-4.若同時滿足條件:
①?x∈R,f(x)<0或g(x)<0;
②?x∈(-∞,-4),f(x)g(x)<0,
則m的取值范圍是(-5,-$\frac{4}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)a,b∈R,則“a=0”是“ab=0”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=(m2+4m-5)x2+4(1-m)x+3.
(1)若對任意實數(shù)x,函數(shù)值恒大于零,求實數(shù)m的取值范圍;
(2)若函數(shù)有兩個不同的零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,三棱柱ABC-A1B1C1的側(cè)棱與底面成60°角,側(cè)棱長與底面邊長均相等,側(cè)面B1C1CB⊥面ABC.
(1)求證:AC1⊥BC;
(2)求BA1與AC1所成的角;
(3)求CB1與平面AC1B1所成角的正弦值;
(4)求二面角C-AC1-B1的余弦值;
(5)若AB=2,求A1到平面AB1C1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知圓O:x2+y2=13,過點(1,2)作直線交圓O于A,B兩點,則AB的最小值為4$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知點(x,y)在映射f:A→B作用下的象是(x+y,x-y),x∈R,y∈R,則點(8,2)的原象
是(5,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知數(shù)列{an}滿足a1=$\frac{3}{2}$,an+1=2-$\frac{1}{{a}_{n}}$.
(1)求$\frac{1}{{a}_{1}-1}$的值;
(2)證明:數(shù)列{$\frac{1}{{a}_{n}-1}$}為等差數(shù)列,并求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)f(x)=$\frac{1}{1+{x}^{2}}$+x3${∫}_{0}^{1}$f(x)dx,則${∫}_{0}^{1}$f(x)dx=$\frac{π}{3}$.

查看答案和解析>>

同步練習(xí)冊答案