【題目】在空間中有如下命題,其中正確的是(

A. 若直線ab共面,直線bc共面,則直線ac共面;

B. 若平面α內(nèi)的任意直線m∥平面β,則平面α∥平面β;

C. 若直線a與平面不垂直,則直線a與平面內(nèi)的所有直線都不垂直;

D. 若點(diǎn)P到三角形三條邊的距離相等,則點(diǎn)P在該三角形所在平面內(nèi)的射影是該三角形的內(nèi)心.

【答案】B

【解析】

根據(jù)直線與直線的位置關(guān)系、面面平行判定定理、三角形內(nèi)心的定義依次判斷各個選項(xiàng)即可得到結(jié)果.

直線與直線共面,直線和直線共面,存在直線與直線異面的情況,錯誤;

平面內(nèi)任意直線均平行于平面,必在內(nèi)必存在兩條相交直線平行于平面,根據(jù)面面平行判定定理可知平面平面正確;

直線與平面不垂直,可能與平面平行或相交;則在平面內(nèi)存在與直線異面的直線與直線垂直,錯誤;

若點(diǎn)到三角形三條邊的距離相等,可知點(diǎn)在三角形所在平面內(nèi)的射影到三角形三邊的距離相等,此射影點(diǎn)可為三角形兩外角平分線與一內(nèi)角平分線的交點(diǎn),此時不是三角形的內(nèi)心,錯誤.

本題正確選項(xiàng):

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知任意角以坐標(biāo)原點(diǎn)為頂點(diǎn),軸的非負(fù)半軸為始邊,若終邊經(jīng)過點(diǎn),且,定義:,稱“”為“正余弦函數(shù)”,對于“正余弦函數(shù)”,有同學(xué)得到以下性質(zhì):

①該函數(shù)的值域?yàn)?/span>; ②該函數(shù)的圖象關(guān)于原點(diǎn)對稱;

③該函數(shù)的圖象關(guān)于直線對稱; ④該函數(shù)為周期函數(shù),且最小正周期為;

⑤該函數(shù)的遞增區(qū)間為.

其中正確的是__________.(填上所有正確性質(zhì)的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)(0,1),(3+2,0),(3-2,0)在圓C.

(1)求圓C的方程.

(2)若圓C與直線x-y+a=0交于A,B兩點(diǎn),OA⊥OB,a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個銷售季度內(nèi),每售出1t該產(chǎn)品獲利潤500元,未售出的產(chǎn)品,每1t虧損300元.根據(jù)歷史資料,得到銷售季度內(nèi)市場需求量的頻率分布直方圖,如圖所示.經(jīng)銷商為下一個銷售季度購進(jìn)了130t該農(nóng)產(chǎn)品.以x(單位:t,100≤x≤150)表示下一個銷售季度內(nèi)的市場需求量,T(單位:元)表示下一個銷售季度內(nèi)經(jīng)銷該農(nóng)產(chǎn)品的利潤.

(1)將T表示為x的函數(shù);
(2)根據(jù)直方圖估計(jì)利潤T不少于57000元的概率;
(3)在直方圖的需求量分組中,以各組的區(qū)間中點(diǎn)值代表該組的各個值,并以需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中點(diǎn)值的概率(例如:若x∈[100,110))則取x=105,且x=105的概率等于需求量落入[100,110)的頻率,求T的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一微商店對某種產(chǎn)品每天的銷售量(件)進(jìn)行為期一個月的數(shù)據(jù)統(tǒng)計(jì)分析,并得出了該月銷售量的直方圖(一個月按30天計(jì)算)如圖所示.假設(shè)用直方圖中所得的頻率來估計(jì)相應(yīng)事件發(fā)生的概率.

(1)求頻率分布直方圖中的值;

(2)求日銷量的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(3)若微商在一天的銷售量超過25件(包括25件),則上級商企會給微商贈送100元的禮金,估計(jì)該微商在一年內(nèi)獲得的禮金數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為促進(jìn)農(nóng)業(yè)發(fā)展,加快農(nóng)村建設(shè),某地政府扶持興建了一批“超級蔬菜大棚”,為了解大棚的面積與年利潤之間的關(guān)系,隨機(jī)抽取了其中的7個大棚,并對當(dāng)年的利潤進(jìn)行統(tǒng)計(jì)整理后得到了如下數(shù)據(jù)對比表:

由所給數(shù)據(jù)的散點(diǎn)圖可以看出,各樣本點(diǎn)都分布在一條直線附近,并且有很強(qiáng)的線性相關(guān)關(guān)系.

(1)求關(guān)于的線性回歸方程;(結(jié)果保留三位小數(shù));

(2)小明家的“超級蔬菜大棚”面積為8.0畝,估計(jì)小明家的大棚當(dāng)年的利潤為多少;

(3)另外調(diào)查了近5年的不同蔬菜畝平均利潤(單位:萬元),其中無絲豆為:1.5,1.7,2.1,2.2,2.5;彩椒為:1.8,1.9,1.9,2.2,2.2,請分析種植哪種蔬菜比較好?

參考數(shù)據(jù):,.

參考公式:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=90°, ,BC=1,P為△ABC內(nèi)一點(diǎn),∠BPC=90°

(1)若 ,求PA;
(2)若∠APB=150°,求tan∠PBA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=cosxsin2x,下列結(jié)論中錯誤的是(
A.y=f(x)的圖象關(guān)于(π,0)中心對稱
B.y=f(x)的圖象關(guān)于x= 對稱
C.f(x)的最大值為
D.f(x)既是奇函數(shù),又是周期函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f (x)=ex﹣ax﹣1,其中e為自然對數(shù)的底數(shù),a∈R.
(1)若a=e,函數(shù)g (x)=(2﹣e)x. ①求函數(shù)h(x)=f (x)﹣g (x)的單調(diào)區(qū)間;
②若函數(shù)F(x)= 的值域?yàn)镽,求實(shí)數(shù)m的取值范圍;
(2)若存在實(shí)數(shù)x1 , x2∈[0,2],使得f(x1)=f(x2),且|x1﹣x2|≥1,求證:e﹣1≤a≤e2﹣e.

查看答案和解析>>

同步練習(xí)冊答案