【題目】設(shè)點(diǎn),動(dòng)圓經(jīng)過點(diǎn)且和直線相切,記動(dòng)圓的圓心的軌跡為曲線.

(1)求曲線的方程;

(2)設(shè)曲線上一點(diǎn)的橫坐標(biāo)為,過的直線交于一點(diǎn),交軸于點(diǎn),過點(diǎn)的垂線交于另一點(diǎn),若的切線,求的最小值.

【答案】(1)(2)

【解析】試題分析:(1)先利用拋物線的定義判定動(dòng)點(diǎn)軌跡是一個(gè)拋物線,再利用待定系數(shù)法求出拋物線的方程;(2)設(shè)出直線方程,聯(lián)立直線和拋物線的方程,得到關(guān)于的一元二次方程,利用根與系數(shù)的關(guān)系和導(dǎo)數(shù)的幾何意義進(jìn)行求解.

試題解析:(1)過點(diǎn)作直線垂直于直線于點(diǎn),由題意得,所以動(dòng)點(diǎn)的軌跡是以為焦點(diǎn),直線為準(zhǔn)線的拋物線.所以拋物線得方程為.

(2)由題意知,過點(diǎn)的直線斜率存在且不為,設(shè)其為,則,當(dāng),則.聯(lián)立方程,整理得: .即,解得, ,而,所以直線斜率為 ,聯(lián)立方程,整理得: ,即,解得,或..

而拋物線在點(diǎn)的切線斜率, 是拋物線的切線, ,整理得,解得(舍去),或.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的方程為,在以原點(diǎn)為極點(diǎn), 軸的非負(fù)關(guān)軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.

(1)將上的所有點(diǎn)的橫坐標(biāo)和縱坐標(biāo)分別伸長到原來的2倍和倍后得到曲線,求曲線的參數(shù)方程;

(2)若分別為曲線與直線的兩個(gè)動(dòng)點(diǎn),求的最小值以及此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中
①函數(shù)f(x)=( x的遞減區(qū)間是(﹣∞,+∞)
②已知函數(shù)f(x)的定義域?yàn)椋?,1),則函數(shù)f(x+1)的定義域?yàn)椋?,2);
③已知(x,y)映射f下的象是(x+y,x﹣y),那么(4,2)在f下的原象是(3,1).
其中正確命題的序號為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測量結(jié)果得如下頻數(shù)分布表:

質(zhì)量指標(biāo)值分組

[75,85)

[8595)

[95,105)

[105,115)

[115,125)

頻數(shù)

6

26

38

22

8

(1)作出這些數(shù)據(jù)的頻率分布直方圖;

(2)估計(jì)這種產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù)及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

(3)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“質(zhì)量指標(biāo)值不低于95的產(chǎn)品至少要占全部產(chǎn)品80%”的規(guī)定?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:正三棱柱中, , 為棱的中點(diǎn).

)求證: 平面

)求證:平面平面

)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是公差不為零的等差數(shù)列,,且,成等比數(shù)列.

(1)求數(shù)列的通項(xiàng);

(2)求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)擬在高一下學(xué)期開設(shè)游泳選修課,為了了解高一學(xué)生喜歡游泳是否與性別有關(guān),該學(xué)校對100名高一新生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:

喜歡游泳

不喜歡游泳

合計(jì)

男生

10

女生

20

合計(jì)

已知在這100人中隨機(jī)抽取1人抽到喜歡游泳的學(xué)生的概率為

(1)請將上述列聯(lián)表補(bǔ)充完整;

(2)并判斷是否有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)?并說明你的理由;

(3)已知在被調(diào)查的學(xué)生中有5名來自甲班,其中3名喜歡游泳,現(xiàn)從這5名學(xué)生中隨機(jī)抽取2人,求恰好有1人喜歡游泳的概率.

下面的臨界值表僅供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某次數(shù)學(xué)考試試題中共有道選擇題,每道選擇題都有個(gè)選項(xiàng),其中僅有一個(gè)是正確的.評分標(biāo)準(zhǔn)規(guī)定:“每題只選項(xiàng),答對得分,不答或答錯(cuò)得分.”某考生每道題都給了一個(gè)答案,已確定有道題的答案是正確的,而其余題中,有兩道題都可判斷出兩個(gè)選項(xiàng)是錯(cuò)誤的有一道題可以判斷一個(gè)選項(xiàng)是錯(cuò)誤的,還有一道題因不理解題意只能亂猜,試求出該考生:

(Ⅰ)得分的概率;

(Ⅱ)所得分?jǐn)?shù)的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), (為常數(shù)).

(Ⅰ)求函數(shù)在點(diǎn)處的切線方程;

(Ⅱ)當(dāng)函數(shù)處取得極值,求函數(shù)的解析式;

(Ⅲ)當(dāng)時(shí),設(shè),若函數(shù)在定義域上存在單調(diào)減區(qū)間,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案