將正分割成個全等的小正三角形(圖2,圖3分別給出了n="2," 3的情形),在每個三角形的頂點各放置一個數(shù),使位于⊿ABC的三邊及平行于某邊的任一直線上的數(shù)(當(dāng)數(shù)的個數(shù)不少于3時)都分別依次成等差數(shù)列.若頂點A ,B ,C處的三個數(shù)互不相同且和為1,記所有頂點上的數(shù)之和為,則有,        ,… ,             .
;
若依題意頂點A ,B ,C處的三個數(shù)互不相同且和為1,按等差數(shù)列的性質(zhì)進(jìn)行計算則顯然運算量較大,故常規(guī)思維不可!可偏偏特取A ,B ,C處的數(shù)均為(極限法)來思考:
則圖2中有,得;故圖3中有,得
;易知時有,
探討數(shù)列
(可參考2006湖南卷:逆序數(shù))由疊加法推知:
,.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如果一個數(shù)列的各項都是實數(shù),且從第二項開始,每一項與它前一項的平方差是相同的常數(shù),則稱該數(shù)列為等方差數(shù)列,這個常數(shù)叫這個數(shù)列的公方差.
(1)設(shè)數(shù)列是公方差為(p>0,an >0)的等方差數(shù)列,的通項公式;
(2)若數(shù)列既是等方差數(shù)列,又是等差數(shù)列,證明該數(shù)列為常數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)在數(shù)列中,前n項和為

(1)求數(shù)列是等差數(shù)列.
(2)求數(shù)列{}的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
在數(shù)列中,a1=2,b1=4,且成等差數(shù)列,成等比數(shù)列(
(Ⅰ)求a2,a3,a4b2b3,b4,由此猜測,的通項公式,并證明你的結(jié)論;
(Ⅱ)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分18分)已知數(shù)列{an}、{bn}、{cn}的通項公式滿足bn=an+1-an,cn=bn+1-bn(n∈N*?),若數(shù)列{bn}是一個非零常數(shù)列,則稱數(shù)列{an}是一階等差數(shù)列;若數(shù)列{cn}是一個非零常數(shù)列,則稱數(shù)列{an}是二階等差數(shù)列?(1)試寫出滿足條件a=1,b1=1,cn=1(n∈N*?)的二階等差數(shù)列{an}的前五項;(2)求滿足條件(1)的二階等差數(shù)列{an}的通項公式an;(3)若數(shù)列{an}首項a=2,且滿足cn-bn+1+3an=-2n+1(n∈N*?),求數(shù)列{an}的通項公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在等差數(shù)列中,已知等于
A.40B.42C.43D.45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)數(shù)列,滿足,且,
(1)求數(shù)列的通項公式;(2)對一切,證明成立;
(3)記數(shù)列,的前項和分別是,證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知{an}為等差數(shù)列,a3 + a8 = 22,a6 = 7,則a5 = ____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在等差數(shù)列中,,,則等于C
A.152B.154C.156D.158

查看答案和解析>>

同步練習(xí)冊答案