設(shè)橢圓C:的離心率為,右焦點(diǎn)到右準(zhǔn)線的距離為3.
(1)求橢圓C的方程;
(2)過(guò)E(,0)作傾角為銳角的直線l交橢圓于A,B兩點(diǎn),若,求l的方程.
【答案】分析:(1)利用橢圓C:的離心率為,右焦點(diǎn)到右準(zhǔn)線的距離為3,建立方程組,求出幾何量,即可求得橢圓C的方程;
(2)設(shè)l的方程代入橢圓方程,消去x可得一元二次方程,利用韋達(dá)定理及,即可求得l的方程.
解答:解:(1)∵橢圓C:的離心率為,右焦點(diǎn)到右準(zhǔn)線的距離為3
,∴c=1,a=2
∴b2=a2-c2=3
∴橢圓C的方程為
(2)設(shè)l:x=λy+(λ>0),代入橢圓方程,消去x可得(3λ2+4)y2+9λy-=0
設(shè)A(x1,y1)、B(x2,y2),則y1+y2=,y1y2=
,∴y1=-3y2,
=-2

∵λ>0,∴
∴l(xiāng)的方程為:
點(diǎn)評(píng):本題考查橢圓的標(biāo)準(zhǔn)方程與幾何性質(zhì),考查直線與橢圓的位置關(guān)系,考查向量知識(shí)的運(yùn)用,正確運(yùn)用韋達(dá)定理是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:專項(xiàng)題 題型:解答題

設(shè)橢圓C:的離心率為e=,點(diǎn)A是橢圓上的一點(diǎn),且點(diǎn)A到橢圓C兩焦點(diǎn)的距離之和為4。
(1)求橢圓C的方程;
(2)橢圓C上一動(dòng)點(diǎn)P(x0,y0)關(guān)于直線y=2x的對(duì)稱點(diǎn)為P1 (x1,y1),求3x1-4y1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年廣東省珠海五中高考數(shù)學(xué)模擬試卷(文科)(解析版) 題型:解答題

設(shè)橢圓C:的離心率為e=,點(diǎn)A是橢圓上的一點(diǎn),且點(diǎn)A到橢圓C兩焦點(diǎn)的距離之和為4.
(1)求橢圓C的方程;
(2)橢圓C上一動(dòng)點(diǎn)P(x,,y)關(guān)于直線y=2x的對(duì)稱點(diǎn)為,求3x1-4y1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年四川省德陽(yáng)市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

設(shè)橢圓C:的離心率為,右焦點(diǎn)到右準(zhǔn)線的距離為3.
(1)求橢圓C的方程;
(2)過(guò)E(,0)作傾角為銳角的直線l交橢圓于A,B兩點(diǎn),若,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年廣東省廣州市高三調(diào)研數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)橢圓C:的離心率為e=,點(diǎn)A是橢圓上的一點(diǎn),且點(diǎn)A到橢圓C兩焦點(diǎn)的距離之和為4.
(1)求橢圓C的方程;
(2)橢圓C上一動(dòng)點(diǎn)P(x,,y)關(guān)于直線y=2x的對(duì)稱點(diǎn)為,求3x1-4y1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年廣東省廣州市高三調(diào)研數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

設(shè)橢圓C:的離心率為e=,點(diǎn)A是橢圓上的一點(diǎn),且點(diǎn)A到橢圓C兩焦點(diǎn)的距離之和為4.
(1)求橢圓C的方程;
(2)橢圓C上一動(dòng)點(diǎn)P(x,,y)關(guān)于直線y=2x的對(duì)稱點(diǎn)為,求3x1-4y1的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案