(2009•盧灣區(qū)二模)若點M(x0,y0)是圓x2+y2=r2內(nèi)異于圓心的點,則直線x0x+y0y=r2與該圓的位置關(guān)系是
相離
相離
分析:先利用點到直線的距離,求得圓心到直線x0x+y0y=r2的距離,根據(jù)P在圓內(nèi),判斷出 x02+y02<r,進(jìn)而可知d>r,故可知直線和圓相離.
解答:解:圓心O(0,0)到直線x0x+y0y=r2的距離為d=
r2
x
2
0
+
y
2
0

∵點M(x0,y0)在圓內(nèi),∴
x
2
0
+
y
2
0
<r
,則有d>r,
故直線和圓相離.
故答案為相離.
點評:本題的考點是直線與圓的位置關(guān)系,主要考查了直線與圓的位置關(guān)系.考查了數(shù)形結(jié)合的思想,直線與圓的位置關(guān)系的判定.解題的關(guān)鍵是看圓心到直線的距離與圓的半徑的大小關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2009•盧灣區(qū)二模)設(shè)數(shù)列{an}的前n項之和為Sn,若Sn=
1
12
(an+3)2
(n∈N*),則{an}(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•盧灣區(qū)二模)在平面直角坐標(biāo)系中,若O為坐標(biāo)原點,則A、B、C三點在同一直線上的充要條件為存在惟一的實數(shù)λ,使得
OC
=λ•
OA
+(1-λ)•
OB
成立,此時稱實數(shù)λ為“向量
OC
關(guān)于
OA
OB
的終點共線分解系數(shù)”.若已知P1(3,1)、P2(-1,3),且向量
OP3
是直線l:x-y+10=0的法向量,則“向量
OP3
關(guān)于
OP1
OP2
的終點共線分解系數(shù)”為
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•盧灣區(qū)二模)在△ABC中,設(shè)角A、B、C所對的邊分別是a、b、c,若b2+c2=a2+
2
bc
,且a=
2
b
,則∠C=
12
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•盧灣區(qū)二模)二項式(x+
1
x
)6
的展開式中的常數(shù)項為
15
15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•盧灣區(qū)二模)若函數(shù)f(x)=2sin2x-2
3
sinxsin(x-
π
2
)
能使得不等式|f(x)-m|<2在區(qū)間(0, 
3
)
上恒成立,則實數(shù)m的取值范圍是
(1,2]
(1,2]

查看答案和解析>>

同步練習(xí)冊答案