3.某市在以對(duì)學(xué)生的綜合素質(zhì)評(píng)價(jià)中,將其測(cè)評(píng)結(jié)果分為“優(yōu)秀、合格、不合格”三個(gè)等級(jí),其中不小于80分為“優(yōu)秀”,小于60分為“不合格”,其它為“合格”.
(1)某校高一年級(jí)有男生500人,女生4000人,為了解性別對(duì)該綜合素質(zhì)評(píng)價(jià)結(jié)果的影響,采用分層抽樣的方法從高一學(xué)生中抽取了45名學(xué)生的綜合素質(zhì)評(píng)價(jià)結(jié)果,其各個(gè)等級(jí)的頻數(shù)統(tǒng)計(jì)如表:
等級(jí)優(yōu)秀合格不合格
男生(人)15x5
女生(人)153y
根據(jù)表中統(tǒng)計(jì)的數(shù)據(jù)填寫(xiě)下面2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“綜合素質(zhì)評(píng)介測(cè)評(píng)結(jié)果為優(yōu)秀與性別有關(guān)”?
男生女生總計(jì)
優(yōu)秀151530
非優(yōu)秀10515
總計(jì)252045
(2)以(1)中抽取的45名學(xué)生的綜合素質(zhì)評(píng)價(jià)等級(jí)的頻率作為全市各個(gè)評(píng)價(jià)等級(jí)發(fā)生的概率,且每名學(xué)生是否“優(yōu)秀”相互獨(dú)立,現(xiàn)從該市高一學(xué)生中隨機(jī)抽取3人.
(i)求所選3人中恰有2人綜合素質(zhì)評(píng)價(jià)為“優(yōu)秀”的概率;
(ii)記X表示這3人中綜合素質(zhì)評(píng)價(jià)等級(jí)為“優(yōu)秀”的個(gè)數(shù),求X的數(shù)學(xué)期望.
參考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
臨界值表:
P(K2≥k00.150.100.050.0250.010
k02.0722.7063.8415.0246.635

分析 (1)先求出從高一年級(jí)男生中抽出人數(shù)及x,y,作出2×2列聯(lián)表,求出K2=1.125<2.706,從而得到?jīng)]有90%的把握認(rèn)為“綜合素質(zhì)評(píng)價(jià)測(cè)評(píng)結(jié)果為優(yōu)秀與性別有關(guān)”.
(2)(i)由(1)知等級(jí)為“優(yōu)秀”的學(xué)生的頻率為$\frac{2}{3}$,從該市高一學(xué)生中隨機(jī)抽取一名學(xué)生,該生為“優(yōu)秀”的概率為$\frac{2}{3}$.由此能求出所選3名學(xué)生中恰有2人綜合素質(zhì)評(píng)價(jià)為‘優(yōu)秀’學(xué)生的概率.
(ii)X表示這3個(gè)人中綜合速度評(píng)價(jià)等級(jí)為“優(yōu)秀”的個(gè)數(shù),由題意,隨機(jī)變量X~B(3,$\frac{2}{3}$),由此能求出X的數(shù)學(xué)期望.

解答 解:(1)設(shè)從高一年級(jí)男生中抽出m人,則$\frac{m}{500}=\frac{45}{500+400},m=25$.
∴x=25-20=5,y=20-18=2

男生女生總計(jì)
優(yōu)秀151530
非優(yōu)秀10515
總計(jì)252045
而$k=\frac{{45×{{(15×5-10×15)}^2}}}{30×15×25×20}=\frac{9}{8}=1.125<2.706$
∴沒(méi)有90%的把握認(rèn)為“測(cè)評(píng)結(jié)果為優(yōu)秀與性別有關(guān)”.
(2)(i)由(1)知等級(jí)為“優(yōu)秀”的學(xué)生的頻率為$\frac{15+15}{45}=\frac{2}{3}$,
∴從該市高一學(xué)生中隨機(jī)抽取1名學(xué)生,該生為“優(yōu)秀”的概率為$\frac{2}{3}$.
記“所選3名學(xué)和g中恰有2人綜合素質(zhì)評(píng)價(jià)‘優(yōu)秀’學(xué)生”為事件A,則事件A發(fā)生的概率為:$P(A)=C_3^2×{(\frac{2}{3})^2}×(1-\frac{2}{3})=\frac{4}{9}$;
(ii)由題意知,隨機(jī)變量X~B(3,$\frac{2}{3}$),
∴隨機(jī)變量X的數(shù)學(xué)期望$E(X)=3×\frac{2}{3}=2$.

點(diǎn)評(píng) 本題考查抽樣方法、獨(dú)立性檢驗(yàn)、獨(dú)立重復(fù)試驗(yàn)的概率,考查二項(xiàng)分布及其期望,考查學(xué)生讀取統(tǒng)計(jì)表,利用統(tǒng)計(jì)量進(jìn)行決策的能力和意識(shí),是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知m、n是不重合的直線,α、β是不重合的平面,正確的是( 。
A.若α∩β=n,m∥n,則m∥α,m∥βB.若m∥α,m⊥n,則n⊥α
C.若m⊥α,m⊥β,則α∥βD.若α⊥β,m⊥α,則m∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知a、b、c為△ABC的三個(gè)內(nèi)角A、B、C的對(duì)邊,$\overrightarrow{m}$=($\sqrt{3}$,-1),$\overrightarrow{n}$=(cosA,sinA),若$\overrightarrow{m}$•$\overrightarrow{n}$=0,且acosB+bcosA=csinC,則B等于( 。
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知f(x)=x2-4x+5,在區(qū)間[1,m]上的值域?yàn)閇1,2],則m的取值范圍是[2,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.為了研究汽車(chē)發(fā)生事故與酒后駕車(chē)是否有關(guān),從發(fā)生碰撞亊故的司機(jī)中抽取200名司機(jī),根據(jù)他們的血液中是否含有酒精以及他們是否對(duì)事故負(fù)責(zé)任,得到如表數(shù)據(jù):
有責(zé)任無(wú)責(zé)任總計(jì)
含有酒精65 80
不含酒精 50120
總計(jì)  200
(1)將上述表格補(bǔ)充完整:
(2)求統(tǒng)計(jì)量χ2,根據(jù)計(jì)算結(jié)果確定司機(jī)對(duì)事故負(fù)有責(zé)任與血液中含有酒精是否有關(guān)系?若有關(guān)系,你認(rèn)為在多大程度上有關(guān)系?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知f(x)是定義在[-1,1]上的奇函數(shù),f(1)=1,且若?a、b∈[-1,1],a+b≠0,恒有$\frac{f(a)+f(b)}{a+b}$>0,
(1)證明:函數(shù)f(x)在[-1,1]上是增函數(shù);
(2)若對(duì)?x∈[-1,1]及?a∈[-1,1],不等式f(x)≤m2-2am+1恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.函數(shù)f(x)=2$\sqrt{x}$-$\frac{x^2}{2}$在[0,1]上的最小值為(  )
A.0B.$\frac{1}{2}$C.1D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=x(lnx+1)(x>0).
(I)求函數(shù)f(x)的最小值;
(2)設(shè)F(x)=ax2+f(x)(a∈R),討論函數(shù)F(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在如圖所示的幾何體中,D是AC的中點(diǎn),EF∥DB.
(1)已知AB=BC,AF=CF,求證:AC⊥平面BEF;
(2)已知G、H分別是EC和FB的中點(diǎn),求證:GH∥平面ABC.

查看答案和解析>>

同步練習(xí)冊(cè)答案