15.函數(shù)f(x)=2$\sqrt{x}$-$\frac{x^2}{2}$在[0,1]上的最小值為(  )
A.0B.$\frac{1}{2}$C.1D.$\frac{3}{2}$

分析 求出函數(shù)的導數(shù),根據(jù)x的范圍,判斷函數(shù)的單調性,從而求出函數(shù)的最小值即可.

解答 解:f′(x)=${x}^{-\frac{1}{2}}$-x=$\frac{\sqrt{x}(1-x\sqrt{x})}{x}$,
∵x∈[0,1],
∴1-x$\sqrt{x}$≥0,
∴f′(x)≥0,
∴f(x)在[0,1]遞增,
∴f(x)min=f(0)=0,
故選:A.

點評 本題考查了函數(shù)的單調性、最值問題,考查導數(shù)的應用,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

5.命題“若x>0,則x2>0”的否定為( 。
A.存在x0>0,使得x2≤0B.若x≤0,則x2≤0
C.若x>0,則x2≤0D.存在x0>0,使得x2<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.函數(shù)f(x)=sin2ωx+$\sqrt{3}$sinωxcosωx-$\frac{1}{2}$(ω>0)的圖象與直線y=m相切,相鄰切點之間的距離為π,
(1)求m和ω的值,
(2)求函數(shù)的單調增區(qū)間,
(3)問:試否存在實數(shù)n,使得函數(shù)f(x)的圖象與直線$\sqrt{6}$x+y+n=0相切,若能,請求出n的值,若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.某市在以對學生的綜合素質評價中,將其測評結果分為“優(yōu)秀、合格、不合格”三個等級,其中不小于80分為“優(yōu)秀”,小于60分為“不合格”,其它為“合格”.
(1)某校高一年級有男生500人,女生4000人,為了解性別對該綜合素質評價結果的影響,采用分層抽樣的方法從高一學生中抽取了45名學生的綜合素質評價結果,其各個等級的頻數(shù)統(tǒng)計如表:
等級優(yōu)秀合格不合格
男生(人)15x5
女生(人)153y
根據(jù)表中統(tǒng)計的數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷是否有90%的把握認為“綜合素質評介測評結果為優(yōu)秀與性別有關”?
男生女生總計
優(yōu)秀151530
非優(yōu)秀10515
總計252045
(2)以(1)中抽取的45名學生的綜合素質評價等級的頻率作為全市各個評價等級發(fā)生的概率,且每名學生是否“優(yōu)秀”相互獨立,現(xiàn)從該市高一學生中隨機抽取3人.
(i)求所選3人中恰有2人綜合素質評價為“優(yōu)秀”的概率;
(ii)記X表示這3人中綜合素質評價等級為“優(yōu)秀”的個數(shù),求X的數(shù)學期望.
參考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
臨界值表:
P(K2≥k00.150.100.050.0250.010
k02.0722.7063.8415.0246.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知集合A={x|0<x<4},B={x|x2+x-12≤0},則A∩B等于( 。
A.{x|0<x≤3}B.{x|3≤x<4}C.{x|0<x<4}D.{x|-4≤x<4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.復數(shù)z=$\frac{2-i}{1+i}$在復平面上對應的點位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.設函數(shù)f(x)=|x2-4x-5|.
(Ⅰ)在區(qū)間[-2,6]上畫出函數(shù)f(x)的圖象;
(Ⅱ)若函數(shù)g(x)=f(x)-4a+1在區(qū)間[-2,6]上有四個零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.袋中共有6個除了顏色外完全相同的球,其中有1個紅球,2個白球和3個黑球,從袋中任取兩球,兩球顏色為一紅一黑的概率等于(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知集合A={x|x≤a+3},B={x|x<-1或x>5}.
(1)若a=-2,求A∩∁RB;
(2)若A∩B=A,求a的取值范圍.

查看答案和解析>>

同步練習冊答案