【題目】“回文數(shù)”是指從左到右與從右到左讀都一樣的正整數(shù),如22,1213553等.顯然2位“回文數(shù)”共9個(gè):11,22,33,…,99.現(xiàn)從9個(gè)不同2位“回文數(shù)”中任取1個(gè)乘以4,其結(jié)果記為X;從9個(gè)不同2位“回文數(shù)”中任取2個(gè)相加,其結(jié)果記為Y

1)求X為“回文數(shù)”的概率;

2)設(shè)隨機(jī)變量表示X,Y兩數(shù)中“回文數(shù)”的個(gè)數(shù),求的概率分布和數(shù)學(xué)期望

【答案】(1)

(2)隨機(jī)變量的概率分布為

0

1

2

P

隨機(jī)變量的數(shù)學(xué)期望為

【解析】

(1)求出回文數(shù)的總數(shù),然后求解X為“回文數(shù)”的概率.

(2)隨機(jī)變量ξ的所有可能取值為0,1,2.由(1)得,設(shè)“Y是‘回文數(shù)’”為事件B,則事件A,B相互獨(dú)立.求出概率,得到分布列,然后求解期望即可.

1)記“X是‘回文數(shù)’”為事件A

9個(gè)不同2位“回文數(shù)”乘以4的值依次為:44,88132,176,220264,308,

352,396.其中“回文數(shù)”有:44,88

所以,事件A的概率

2)根據(jù)條件知,隨機(jī)變量的所有可能取值為0,1,2

由(1)得

設(shè)“Y是‘回文數(shù)’”為事件B,則事件AB相互獨(dú)立.

根據(jù)已知條件得,

;

.

所以,隨機(jī)變量的概率分布為

0

1

2

P

所以,隨機(jī)變量的數(shù)學(xué)期望為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地某高中2018年的高考考生人數(shù)是2015年高考考生人數(shù)的1.5倍.為了更好地對(duì)比該?忌纳龑W(xué)情況,統(tǒng)計(jì)了該校2015和2018年高考情況,得到如下餅圖:

2018年與2015年比較,下列結(jié)論正確的是( )

A. 一本達(dá)線人數(shù)減少

B. 二本達(dá)線人數(shù)增加了0.5倍

C. 藝體達(dá)線人數(shù)相同

D. 不上線的人數(shù)有所增加

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合,若對(duì)于,,使得成立,則稱集合M是“互垂點(diǎn)集”.給出下列四個(gè)集合:;;;.其中是“互垂點(diǎn)集”集合的為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》是我國(guó)古代數(shù)學(xué)名著,它在幾何學(xué)中的研究比西方早1000多年,在《九章算術(shù)》中,將底面為直角三角形,且側(cè)棱垂直于底面的三棱柱稱為塹堵(qian du);陽(yáng)馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐,鱉膈(bie nao)指四個(gè)面均為直角三角形的四面體.如圖在塹堵中,.

(1)求證:四棱錐為陽(yáng)馬;

(2)若,當(dāng)鱉膈體積最大時(shí),求銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在六面體ABCDA1B1C1D1中,AA1//CC1,A1B=A1D,AB=AD.求證:

1AA1BD;

2BB1//DD1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O為坐標(biāo)原點(diǎn),點(diǎn)F為拋物線C1的焦點(diǎn),且拋物線C1上點(diǎn)P處的切線與圓C2相切于點(diǎn)Q.

當(dāng)直線PQ的方程為時(shí),求 拋物線C1的方程;

當(dāng)正數(shù)P變化時(shí),記S1 ,S2分別為△FPQ,△FOQ的面積,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

1)設(shè)函數(shù),若,求的極值;

2)設(shè)函數(shù),若的圖象與的圖象有,兩個(gè)不同的交點(diǎn),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,邊長(zhǎng)為2的正方形所在的平面與半圓弧所在平面垂直,上異于,的點(diǎn).

(1)證明:平面平面;

(2)當(dāng)三棱錐體積最大時(shí),求面與面所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=xlnx,g(x)=,

(1)求f(x)的最小值;

(2)對(duì)任意,都有恒成立,求實(shí)數(shù)a的取值范圍;

(3)證明:對(duì)一切,都有成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案