【題目】如圖,四邊形均為菱形,,

1求證:平面

2求證:平面;

3求二面角的余弦值

【答案】1證明見解析;2證明見解析;3.

【解析】

試題分析:1由線面垂直的判定定理得到結(jié)論2通過證明線線平行,得到線面平行;3建立空間直角坐標系,求出平面的法向量,易知,所以面的法向量為,再求出它們的夾角的余弦值.

試題解析:1證明:設(shè)相交于點,連接,因為四邊形為菱形所以,中點,又,所以,

因為,所以平面

2證明:因為四邊形均為菱形,

所以,所以平面平面,

平面,所以平面

3解:因為四邊形為菱形,,所以△為等邊三角形,

因為中點,所以,平面

,,兩兩垂直,建立如圖所示的空間直角坐標系

設(shè),因為四邊形為菱形,所以,,

所以,,,

所以,

設(shè)平面的法向量則有所以

,

易知平面的法向量為

由二面角是銳角,得

所以二面角的余弦值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD 中,AB∥CD ,AB⊥ADCD=2AB,平面PAD⊥底面ABCD,PA⊥AD,EF分別為CDPC的中點.求證:

1BE∥平面PAD

2)平面BEF⊥平面PCD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從參加考試的學(xué)生中抽出60名學(xué)生,將其成績(均為整數(shù))分成六組[40,50),[50,60), ...,[90,100]后畫出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:

(Ⅰ)求成績落在[70,80)上的頻率,并補全這個頻率分布直方圖;

(Ⅱ) 估計這次考試的及格率(60分及以上為及格)和平均分;

(Ⅲ) 從成績在[40,50)和[90,100]的學(xué)生中任選兩人,求他們在同一分數(shù)段的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x)是偶函數(shù),對于x∈R都有f(x+6)=f(x)+f(3)成立.當(dāng)x1,x2∈[0,3],且x1≠x2時,都有 >0,給出下列命題:

① f(3)=0;

② 直線x=-6是函數(shù)y=f(x)的圖象的一條對稱軸;

③ 函數(shù)y=f(x)在[-9,-6]上為單調(diào)遞減函數(shù);

④ 函數(shù)y=f(x)在[-9,9]上有4個零點.

其中正確的命題是____________.(填序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a=(1,2),b=(-2,n),ab的夾角是45°.

(1) 求b;

(2) cb同向,且aca垂直,求向量c的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{}的前n項和 (n為正整數(shù))。

1,求證數(shù)列{}是等差數(shù)列,并求數(shù)列{}的通項公式;

(2),試比較的大小,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形均為菱形,,

1求證:平面;

2求證:平面;

3求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的最小正周期為.

1求函數(shù)的單調(diào)增區(qū)間;

2將函數(shù)的圖象向左平移個單位,再向上平移1個單位,得到函數(shù)的圖象,若上至少含有10個零點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)lm是兩條不同的直線,α是一個平面,則下列命題正確的是( )

A. l⊥m,,則l⊥α

B. l⊥α,l∥m,則m⊥α

C. l∥α,則l∥m

D. l∥α,m∥α,則l∥m

查看答案和解析>>

同步練習(xí)冊答案