直線l1l2,又l2過點A(1,1),B(m,n),l1y軸平行則n=(  )

A.1                                    B.-1

C.2                                    D.不存在

 A

[解析] ∵l1y軸,∴l1的斜率不存在,又l1l2

l2的斜率為0,∴n=1 故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知M(0,-2),點A在x軸上,點B在y軸的正半軸,點P在直線AB上,且滿足
AP
=
PB
,
MA
AP
=0.
(1)當(dāng)A點在x軸上移動時,求動點P的軌跡C的方程;
(2)過(-2,0)的直線l與軌跡C交于E、F兩點,又過E、F作軌跡C的切線l1、l2,當(dāng)l1⊥l2時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若橢圓C1
x2
4
+
y2
b2
=1(0<b<2)
的離心率等于
3
2
,拋物線C2:x2=2py(p>0)的焦點在橢圓C1的頂點上.
(1)求拋物線C2的方程;
(2)求過點M(-1,0)的直線l與拋物線C2交E、F兩點,又過E、F作拋物線C2的切線l1、l2,當(dāng)l1⊥l2時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知橢圓C的方程為
x2
a2
+
y2
b2
=1(a>b>0),雙曲線
x2
a2
-
y2
b2
=1的兩條漸近線為l1、l2,過橢圓C的右焦點F作直線l,使l⊥l1,又l與l2交于P點,設(shè)l與橢圓C的兩個交點由上至下依次為A、B.(如圖)
(1)當(dāng)l1與l2夾角為60°,雙曲線的焦距為4時,求橢圓C的方程;
(2)當(dāng)
FA
AP
時,求λ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過點(1,
178
)且它的一個方向向量為(4,-7),又圓C1:(x+3)2+(y-1)2=4與圓C2關(guān)于直線l對稱.
(Ⅰ)求直線l和圓C2的方程;
(Ⅱ)設(shè)P為平面上的點,滿足:存在過點P的無窮多對互相垂直的直線l1和l2,它們分別與圓C1和圓C2相交,且直線l1被圓C1截得的弦長與直線l2被圓C2截得的弦長相等,試示所有滿足條件的點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•武漢模擬)如圖,直線l:y=
4
3
(x-2)和雙曲線C:
x2
a2
-
y2
b2
=1 (a>0,b>0)交于A、B兩點,|AB|=
12
11
,又l關(guān)于直線l1:y=
b
a
x對稱的直線l2與x軸平行.
(1)求雙曲線C的離心率;(2)求雙曲線C的方程.

查看答案和解析>>

同步練習(xí)冊答案