【題目】某單位準(zhǔn)備購買三臺設(shè)備,型號分別為已知這三臺設(shè)備均使用同一種易耗品,提供設(shè)備的商家規(guī)定:可以在購買設(shè)備的同時購買該易耗品,每件易耗品的價格為100元,也可以在設(shè)備使用過程中,隨時單獨(dú)購買易耗品,每件易耗品的價格為200.為了決策在購買設(shè)備時應(yīng)購買的易耗品的件數(shù).該單位調(diào)查了這三種型號的設(shè)備各60臺,調(diào)査每臺設(shè)備在一個月中使用的易耗品的件數(shù),并得到統(tǒng)計(jì)表如下所示.

每臺設(shè)備一個月中使用的易耗品的件數(shù)

6

7

8

型號A

30

30

0

頻數(shù)

型號B

20

30

10

型號C

0

45

15

將調(diào)查的每種型號的設(shè)備的頻率視為概率,各臺設(shè)備在易耗品的使用上相互獨(dú)立.

1)求該單位一個月中三臺設(shè)備使用的易耗品總數(shù)超過21件的概率;

2)以該單位一個月購買易耗品所需總費(fèi)用的期望值為決策依據(jù),該單位在購買設(shè)備時應(yīng)同時購買20件還是21件易耗品?

【答案】12)應(yīng)該購買21件易耗品

【解析】

1)由統(tǒng)計(jì)表中數(shù)據(jù)可得型號分別為在一個月使用易耗品的件數(shù)為6,7,8時的概率,設(shè)該單位三臺設(shè)備一個月中使用易耗品的件數(shù)總數(shù)為X,,利用獨(dú)立事件概率公式進(jìn)而求解即可;

2)由題可得X所有可能的取值為,即可求得對應(yīng)的概率,再分別討論該單位在購買設(shè)備時應(yīng)同時購買20件易耗品和21件易耗品時總費(fèi)用的可能取值及期望,即可分析求解.

1)由題中的表格可知

A型號的設(shè)備一個月使用易耗品的件數(shù)為67的頻率均為

B型號的設(shè)備一個月使用易耗品的件數(shù)為6,7,8的頻率分別為;

C型號的設(shè)備一個月使用易耗品的件數(shù)為78的頻率分別為

設(shè)該單位一個月中三臺設(shè)備使用易耗品的件數(shù)分別為,則

,,,

設(shè)該單位三臺設(shè)備一個月中使用易耗品的件數(shù)總數(shù)為X,

,

,

,

即該單位一個月中三臺設(shè)備使用的易耗品總數(shù)超過21件的概率為.

2)以題意知,X所有可能的取值為

;

;

;

由(1)知,,

若該單位在購買設(shè)備的同時購買了20件易耗品,設(shè)該單位一個月中購買易耗品所需的總費(fèi)用為元,則的所有可能取值為,

;

;

;

若該單位在肋買設(shè)備的同時購買了21件易耗品,設(shè)該單位一個月中購買易耗品所需的總費(fèi)用為元,則的所有可能取值為,

;

;

;

;

,所以該單位在購買設(shè)備時應(yīng)該購買21件易耗品

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

2)當(dāng)時,若,恒成立,求實(shí)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某超市銷售某種商品,據(jù)統(tǒng)計(jì),該該商品每日的銷售量(單位:千克)與銷售價格(單位:元/千克,其中)滿足:當(dāng)時,,為常數(shù));當(dāng)時,,已知當(dāng)銷售價格為6/千克時,每日售出該商品170千克.

1)求,的值,并確定關(guān)于的函數(shù)解析式;

2)若該商品的銷售成本為3/千克,試確定銷售價格的值,使店鋪每日銷售該商品所獲利潤最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,南寧大力實(shí)施二產(chǎn)補(bǔ)短板、三產(chǎn)強(qiáng)優(yōu)勢、一產(chǎn)顯特色策略,著力發(fā)展實(shí)體經(jīng)濟(jì),工業(yè)取得突飛猛進(jìn)的發(fā)展.逐步形成了以電子信息、機(jī)械裝備、食品制糖、鋁深加工等為主的4大支柱產(chǎn)業(yè).廣西洋浦南華糖業(yè)積極響應(yīng)號召,大力研發(fā)新產(chǎn)品,為了對新研發(fā)的一批產(chǎn)品進(jìn)行合理定價,將該產(chǎn)品按事先擬定的價格進(jìn)行試銷,得到一組銷售數(shù)據(jù),如下表所示,已知.

1)求出q的值;

2)已知變量xy具有線性相關(guān)關(guān)系,求產(chǎn)品銷量y()關(guān)于試銷單價x()的線性回歸方程

3)用表示用(2)中所求的線性回歸方程得到的與對應(yīng)的產(chǎn)品銷量的估計(jì)值.當(dāng)銷售數(shù)據(jù)對應(yīng)的殘差的絕對值時,則將銷售數(shù)據(jù)稱為一個好數(shù)據(jù)”.現(xiàn)從6個銷售數(shù)據(jù)中任取3個,求好數(shù)據(jù)個數(shù)的數(shù)學(xué)期望.

(參考公式:線性回歸方程中的最小二乘估計(jì)分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的展開式中第5項(xiàng)與第7項(xiàng)的二項(xiàng)數(shù)系數(shù)相等,且展開式的各項(xiàng)系數(shù)之和為1024,則下列說法正確的是(

A.展開式中奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為256

B.展開式中第6項(xiàng)的系數(shù)最大

C.展開式中存在常數(shù)項(xiàng)

D.展開式中含項(xiàng)的系數(shù)為45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠采用甲、乙兩種不同生產(chǎn)方式生產(chǎn)某零件,現(xiàn)對兩種生產(chǎn)方式所生產(chǎn)的這種零件的產(chǎn)品質(zhì)量進(jìn)行對比,其質(zhì)量按測試指標(biāo)可劃分為:指標(biāo)在區(qū)間100的為一等品;指標(biāo)在區(qū)間的為二等品現(xiàn)分別從甲、乙兩種不同生產(chǎn)方式所生產(chǎn)的零件中,各自隨機(jī)抽取100件作為樣本進(jìn)行檢測,測試指標(biāo)結(jié)果的頻率分布直方圖如圖所示:

若在甲種生產(chǎn)方式生產(chǎn)的這100件零件中按等級,利用分層抽樣的方法抽取10件,再從這10件零件中隨機(jī)抽取3件,求至少有1件一等品的概率;

將頻率分布直方圖中的頻率視作概率,用樣本估計(jì)總體若從該廠采用乙種生產(chǎn)方式所生產(chǎn)的所有這種零件中隨機(jī)抽取3件,記3件零件中所含一等品的件數(shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,我國許多省市霧霾天氣頻發(fā),為增強(qiáng)市民的環(huán)境保護(hù)意識,某市面向全市征召名義務(wù)宣傳志愿者,成立環(huán)境保護(hù)宣傳組織,現(xiàn)把該組織的成員按年齡分成組第,第,第,第,第,得到的頻率分布直方圖如圖所示,已知第組有人.

(1)求該組織的人數(shù);

(2)若在第組中用分層抽樣的方法抽取名志愿者參加某社區(qū)的宣傳活動,應(yīng)從第組各抽取多少名志愿者?

(3)在(2)的條件下,該組織決定在這名志愿者中隨機(jī)抽取名志愿者介紹宣傳經(jīng)驗(yàn),求第組至少有名志愿者被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面左圖是我省某地斜拉式大橋的圖片,合肥一中學(xué)數(shù)學(xué)興趣小組對大橋有關(guān)數(shù)據(jù)進(jìn)行了測量,并將其簡化為右圖所示.其中橋塔ABCD與橋面AC垂直,若.

1)當(dāng)時,試確定點(diǎn)P在線段AC上的位置,并寫出求解過程;

2)要使得達(dá)到最大,試問點(diǎn)P在線段AC上何處?請寫出求解過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表是某公司20185~12月份研發(fā)費(fèi)用(百萬元)和產(chǎn)品銷量(萬臺)的具體數(shù)據(jù):

5

6

7

8

9

10

11

12

研發(fā)費(fèi)用(百萬元)

2

3

6

10

21

13

15

18

產(chǎn)品銷量(萬臺)

1

1

2

2.5

6

3.5

3.5

4.5

(Ⅰ)根據(jù)數(shù)據(jù)可知之間存在線性相關(guān)關(guān)系,求出的線性回歸方程(系數(shù)精確到0.01);

(Ⅱ)該公司制定了如下獎勵制度:以(單位:萬臺)表示日銷售,當(dāng)時,不設(shè)獎;當(dāng)時,每位員工每日獎勵200元;當(dāng)時,每位員工每日獎勵300元;當(dāng)時,每位員工每日獎勵400.現(xiàn)已知該公司某月份日銷售(萬臺)服從正態(tài)分布(其中20185-12月產(chǎn)品銷售平均數(shù)的二十分之一),請你估計(jì)每位員工該月(按30天計(jì)算)獲得獎勵金額總數(shù)大約多少元.

參考數(shù)據(jù):,,,

參考公式:相關(guān)系數(shù),其回歸直線中的,若隨機(jī)變量服從正態(tài)分布,則.

查看答案和解析>>

同步練習(xí)冊答案