【題目】近年來,南寧大力實(shí)施二產(chǎn)補(bǔ)短板、三產(chǎn)強(qiáng)優(yōu)勢(shì)、一產(chǎn)顯特色策略,著力發(fā)展實(shí)體經(jīng)濟(jì),工業(yè)取得突飛猛進(jìn)的發(fā)展.逐步形成了以電子信息、機(jī)械裝備、食品制糖、鋁深加工等為主的4大支柱產(chǎn)業(yè).廣西洋浦南華糖業(yè)積極響應(yīng)號(hào)召,大力研發(fā)新產(chǎn)品,為了對(duì)新研發(fā)的一批產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到一組銷售數(shù)據(jù),如下表所示,已知.

1)求出q的值;

2)已知變量x,y具有線性相關(guān)關(guān)系,求產(chǎn)品銷量y()關(guān)于試銷單價(jià)x()的線性回歸方程;

3)用表示用(2)中所求的線性回歸方程得到的與對(duì)應(yīng)的產(chǎn)品銷量的估計(jì)值.當(dāng)銷售數(shù)據(jù)對(duì)應(yīng)的殘差的絕對(duì)值時(shí),則將銷售數(shù)據(jù)稱為一個(gè)好數(shù)據(jù)”.現(xiàn)從6個(gè)銷售數(shù)據(jù)中任取3個(gè),求好數(shù)據(jù)個(gè)數(shù)的數(shù)學(xué)期望.

(參考公式:線性回歸方程中的最小二乘估計(jì)分別為:

【答案】1;(2;(3.

【解析】

1)利用列方程,由此求得的值.

2)根據(jù)回歸直線方程計(jì)算公式,計(jì)算出回歸直線方程.

3)求得,以及殘差的絕對(duì)值,利用超幾何分布分布列的計(jì)算公式,計(jì)算出的分布列,并求得數(shù)學(xué)期望.

1)依題意,解得.

2)依題意,.所以.

3)列表得:

4

5

6

7

8

9

90

84

83

80

75

68

90

86

82

78

74

70

0

2

1

2

1

2

所以,好數(shù)據(jù)有三個(gè).于是的可能取值為.

,,.所以數(shù)學(xué)期望為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年安慶市在大力推進(jìn)城市環(huán)境、人文精神建設(shè)的過程中,居民生活垃圾分類逐漸形成意識(shí).有關(guān)部門為宣傳垃圾分類知識(shí),面向該市市民進(jìn)行了一次垃圾分類知識(shí)"的網(wǎng)絡(luò)問卷調(diào)查,每位市民僅有一次參與機(jī)會(huì),通過抽樣,得到參與問卷調(diào)查中的1000人的得分?jǐn)?shù)據(jù),其頻率分布直方圖如圖:

1)由頻率分布直方圖可以認(rèn)為,此次問卷調(diào)查的得分Z服從正態(tài)分布,近似為這1000人得分的平均值(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表),利用該正態(tài)分布,求P);

2)在(1)的條件下,有關(guān)部門為此次參加問卷調(diào)查的市民制定如下獎(jiǎng)勵(lì)方案:

i)得分不低于可獲贈(zèng)2次隨機(jī)話費(fèi),得分低于則只有1次:

ii)每次贈(zèng)送的隨機(jī)話費(fèi)和對(duì)應(yīng)概率如下:

贈(zèng)送話費(fèi)(單位:元)

10

20

概率

現(xiàn)有一位市民要參加此次問卷調(diào)查,記X(單位:元)為該市民參加問卷調(diào)查獲贈(zèng)的話費(fèi),求X的分布列.附:,若,則,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】秉承“綠水青山就是金山銀山”的發(fā)展理念,某市環(huán)保部門通過制定評(píng)分標(biāo)準(zhǔn),先對(duì)本市的企業(yè)進(jìn)行評(píng)估,評(píng)出四個(gè)等級(jí),并根據(jù)等級(jí)給予相應(yīng)的獎(jiǎng)懲,如下表所示:

評(píng)估得分

評(píng)定等級(jí)

不合格

合格

良好

優(yōu)秀

獎(jiǎng)勵(lì)(萬元)

環(huán)保部門對(duì)企業(yè)評(píng)估完成后,隨機(jī)抽取了家企業(yè)的評(píng)估得分(分)為樣本,得到如下頻率分布表:

評(píng)估得分

頻率

其中、表示模糊不清的兩個(gè)數(shù)字,但知道樣本評(píng)估得分的平均數(shù)是.

1)現(xiàn)從樣本外的數(shù)百個(gè)企業(yè)評(píng)估得分中隨機(jī)抽取個(gè),若以樣本中頻率為概率,求該家企業(yè)的獎(jiǎng)勵(lì)不少于萬元的概率;

2)現(xiàn)從樣本“不合格”、“合格”、“良好”三個(gè)等級(jí)中,按分層抽樣的方法抽取家企業(yè),再?gòu)倪@家企業(yè)隨機(jī)抽取家,求這兩家企業(yè)所獲獎(jiǎng)勵(lì)之和不少于萬元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年末,武漢出現(xiàn)新型冠狀病毒肺炎()疫情,并快速席卷我國(guó)其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,所以目前沒有特異治療方法,防控難度很大.武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從27日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發(fā)熱患者和與確診患者的密切接觸者等“四類”人員,強(qiáng)化網(wǎng)格化管理,不落一戶、不漏一人.在排查期間,一戶6口之家被確認(rèn)為“與確診患者的密切接觸者”,這種情況下醫(yī)護(hù)人員要對(duì)其家庭成員隨機(jī)地逐一進(jìn)行“核糖核酸”檢測(cè),若出現(xiàn)陽(yáng)性,則該家庭為“感染高危戶”.設(shè)該家庭每個(gè)成員檢測(cè)呈陽(yáng)性的概率均為)且相互獨(dú)立,該家庭至少檢測(cè)了5個(gè)人才能確定為“感染高危戶”的概率為,當(dāng)時(shí),最大,則

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某建筑工地搭建的腳手架局部類似于一個(gè)3×2×3的長(zhǎng)方體框架,一個(gè)建筑工人欲從A處沿腳手架攀登至B處,則其最近的行走路線中不連續(xù)向上攀登的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若定義在上的函數(shù).

1)求函數(shù)的單調(diào)區(qū)間;

2)若、滿足,則稱更接近.當(dāng),試比較哪個(gè)更接近,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位準(zhǔn)備購(gòu)買三臺(tái)設(shè)備,型號(hào)分別為已知這三臺(tái)設(shè)備均使用同一種易耗品,提供設(shè)備的商家規(guī)定:可以在購(gòu)買設(shè)備的同時(shí)購(gòu)買該易耗品,每件易耗品的價(jià)格為100元,也可以在設(shè)備使用過程中,隨時(shí)單獨(dú)購(gòu)買易耗品,每件易耗品的價(jià)格為200.為了決策在購(gòu)買設(shè)備時(shí)應(yīng)購(gòu)買的易耗品的件數(shù).該單位調(diào)查了這三種型號(hào)的設(shè)備各60臺(tái),調(diào)査每臺(tái)設(shè)備在一個(gè)月中使用的易耗品的件數(shù),并得到統(tǒng)計(jì)表如下所示.

每臺(tái)設(shè)備一個(gè)月中使用的易耗品的件數(shù)

6

7

8

型號(hào)A

30

30

0

頻數(shù)

型號(hào)B

20

30

10

型號(hào)C

0

45

15

將調(diào)查的每種型號(hào)的設(shè)備的頻率視為概率,各臺(tái)設(shè)備在易耗品的使用上相互獨(dú)立.

1)求該單位一個(gè)月中三臺(tái)設(shè)備使用的易耗品總數(shù)超過21件的概率;

2)以該單位一個(gè)月購(gòu)買易耗品所需總費(fèi)用的期望值為決策依據(jù),該單位在購(gòu)買設(shè)備時(shí)應(yīng)同時(shí)購(gòu)買20件還是21件易耗品?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某健身房為了解運(yùn)動(dòng)健身減肥的效果,調(diào)查了名肥胖者健身前(如直方圖(1)所示)后(如直方圖(2)所示)的體重(單位:)變化情況:

對(duì)比數(shù)據(jù),關(guān)于這名肥胖者,下面結(jié)論正確的是( )

A.他們健身后,體重在區(qū)間內(nèi)的人數(shù)較健身前增加了

B.他們健身后,體重原在區(qū)間內(nèi)的人員一定無變化

C.他們健身后,人的平均體重大約減少了

D.他們健身后,原來體重在區(qū)間內(nèi)的肥胖者體重都有減少

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,平面五邊形是由邊長(zhǎng)為2的正方形與上底為1,高為直角梯形組合而成,將五邊形沿著折疊,得到圖2所示的空間幾何體,其中.

1)證明:平面;

2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案