已知函數(shù),則  
.

試題分析:兩函數(shù)的差求導(dǎo)數(shù).分別求導(dǎo)再相減.故填.正弦函數(shù)的導(dǎo)數(shù)是余弦函數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知函數(shù),.
(1)若恒成立,求實數(shù)的值;
(2)若方程有一根為,方程的根為,是否存在實數(shù),使?若存在,求出所有滿足條件的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)的圖像在點處的切線方程為.
(I)求實數(shù)的值;
(Ⅱ)當(dāng)時,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,某自來水公司要在公路兩側(cè)排水管,公路為東西方向,在路北側(cè)沿直線排水管,在路南側(cè)沿直線排水管(假設(shè)水管與公路的南,北側(cè)在一條直線上且水管的大小看作為一條直線),現(xiàn)要在矩形區(qū)域ABCD內(nèi)沿直線EF將接通.已知AB = 60m,BC = 60m,公路兩側(cè)排管費用為每米1萬元,穿過公路的EF部分的排管費用為每米2萬元,設(shè)EF與AB所成角為.矩形區(qū)域內(nèi)的排管費用為W.

(1)求W關(guān)于的函數(shù)關(guān)系式;
(2)求W的最小值及相應(yīng)的角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)當(dāng)時,求函數(shù)的極大值和極小值;
(Ⅱ)當(dāng)時,恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)(其中是實數(shù)).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若,且有兩個極值點,求的取值范圍.
(其中是自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),點為一定點,直線分別與函數(shù)的圖象和軸交于點,,記的面積為.
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時, 若,使得, 求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù),.
(1)當(dāng)時,函數(shù)處有極小值,求函數(shù)的單調(diào)遞增區(qū)間;
(2)若函數(shù)有相同的極大值,且函數(shù)在區(qū)間上的最大值為,求實數(shù)的值(其中是自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),(其中常數(shù)).
(1)當(dāng)時,求的極大值;
(2)試討論在區(qū)間上的單調(diào)性;
(3)當(dāng)時,曲線上總存在相異兩點、,使得曲線
在點、處的切線互相平行,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案