【題目】設(shè)數(shù)列的前項和為,對任意,點都在函數(shù)的圖象上.

(1),歸納數(shù)列的通項公式(不必證明).

(2)將數(shù)列依次按項、項、項、項、項循環(huán)地分為,,,各個括號內(nèi)各數(shù)之和,設(shè)由這些和按原來括號的前后順序構(gòu)成的數(shù)列為,求的值.

(3)設(shè)為數(shù)列的前項積,若不等式對一切都成立,其中,求的取值范圍.

【答案】1,, 23012 3

【解析】

1)求得,分別令,23,進(jìn)而歸納出數(shù)列的通項公式;

2)寫出幾個循環(huán)數(shù),可得每一次循環(huán)記為一組,由每一個循環(huán)含有5個括號,故是第20組中第5個括號內(nèi)的數(shù)之和,每一個循環(huán)中含有15個數(shù),20個循環(huán)具有300個數(shù),計算可得所求和;

3)由題意可得原不等式即為對一切都成立,

設(shè),則只需,判斷數(shù)列的單調(diào)性,可得最大值,解不等式即可得到所求的范圍.

因為點在函數(shù)的圖象上,故

所以

,得,所以;

,得,所以;

,得,所以;

由此猜想:.

因為,所以數(shù)列依次按項、項、項、項、項循環(huán)地分為,,

每一次循環(huán)記為一組.由于每一個循環(huán)含有個括號,故是第組中第個括號內(nèi)各數(shù)之和,每個循環(huán)中有個數(shù),個循環(huán)共有個數(shù).

,所以.

3)因為,

所以

對一切都成立,

就是,則只需即可

由于,所以

是單調(diào)遞減,

于是解得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐中,,,點,分別是棱,的中點,點的重心.

1)證明:平面

2)若與平面所成的角為,且,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦距為4,且過點.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)設(shè)為橢圓上一點,過點軸的垂線,垂足為,取點,連接,過點的垂線交軸于點,點是點關(guān)于軸的對稱點,作直線,問這樣作出的直線是否與橢圓一定有唯一的公共點?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長均相等的四棱錐, 為底面正方形的中心, ,分別為側(cè)棱,的中點,有下列結(jié)論正確的有:( )

A.∥平面B.平面∥平面

C.直線與直線所成角的大小為D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動圓在圓外部且與圓相切,同時還在圓內(nèi)部與圓相切.

1)求動圓圓心的軌跡方程;

2)記(1)中求出的軌跡為,軸的兩個交點分別為、,上異于的動點,又直線軸交于點,直線、分別交直線、兩點,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列的前項和為,等比數(shù)列的前項和為,且

1)設(shè),求數(shù)列的通項公式;

2)在(1)的條件下,且,求滿足的所有正整數(shù);

3)若存在正整數(shù),且,試比較的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}的前n項和為Sn,等比數(shù)列{bn}的前n項和為Tn,a1=﹣1,b1=1,a2+b2=2.

(1)若a3+b3=5,求{bn}的通項公式;

(2)若T3=21,求S3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:函數(shù)fx)=2lnxax2+3x,其中aR

1)若f1)=2,求函數(shù)fx)的最大值;

2)若a=﹣1,正實數(shù)x1,x2滿足fx1+fx2)=0,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD是邊長為1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,E為MC的中點,則下列結(jié)論不正確的是( 。

A. 平面平面ABN B.

C. 平面平面AMN D. 平面平面AMN

查看答案和解析>>

同步練習(xí)冊答案