精英家教網 > 高中數學 > 題目詳情

在空間直角坐標系O-xyz中,點M(1,-1,2)關于平面xoy對稱的點的坐標為________.

(1,-1,-2)
分析:根據關于平面xoy對稱的點的規(guī)律:橫坐標、縱坐標保持不變,第三坐標變?yōu)樗南喾磾,即可求得答案?br />解答:由題意,關于平面xoy對稱的點橫坐標、縱坐標保持不變,第三坐標變?yōu)樗南喾磾,從而有點M(1,-1,2)關于平面xoy對稱的點的坐標為(1,-1,-2)
故答案為:(1,-1,-2)
點評:本題以空間直角坐標系為載體,考查點關于面的對稱,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在空間直角坐標系O-xyz中,點A、B、C、D的坐標分別為A(1,,0,,0)、B(0,,2,,0)、C(2,,4,,0)、D(1,,2,,2),則三棱錐A-BCD的體積是( 。
A、2B、3C、6D、10

查看答案和解析>>

科目:高中數學 來源: 題型:

在空間直角坐標系O-xyz中,已知
OA
=(1,2,3)
,
OB
=(2,1,2)
,
OP
=(1,1,2)
,點Q在直線OP上運動,則當
QA
QB
取得最小值時,點Q的坐標為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•徐州模擬)在空間直角坐標系O-xyz中,點P(4,3,7)關于坐標平面yOz的對稱點的坐標為
(-4,3,7)
(-4,3,7)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•閘北區(qū)二模)和平面解析幾何的觀點相同,在空間中,空間曲面可以看作是適合某種條件的動點的軌跡.在空間直角坐標系O-xyz中,空間曲面的方程是一個三元方程F(x,y,z)=0.
設F1、F2為空間中的兩個定點,|F1F2|=2c>0,我們將曲面Γ定義為滿足|PF1|+|PF2|=2a(a>c)的動點P的軌跡.
(1)試建立一個適當的空間直角坐標系O-xyz,求曲面Γ的方程;
(2)指出和證明曲面Γ的對稱性,并畫出曲面Γ的直觀圖.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•奉賢區(qū)二模)(理)在空間直角坐標系O-xyz中,滿足條件[x]2+[y]2+[z]2≤1的點(x,y,z)構成的空間區(qū)域Ω2的體積為V2([x],[y],[z]分別表示不大于x,y,z的最大整數),則V2=
7
7

查看答案和解析>>

同步練習冊答案