【答案】
分析:(Ⅰ)把a(bǔ)=-
代入函數(shù)f(x),再對(duì)其進(jìn)行求導(dǎo)利用導(dǎo)數(shù)研究函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)已知當(dāng)x∈[0,+∞)時(shí),函數(shù)y=f(x)圖象上的點(diǎn)都在
所表示的平面區(qū)域內(nèi),將問(wèn)題轉(zhuǎn)化為當(dāng)x∈[0,+∞)時(shí),不等式f(x)≤x恒成立,即ax
2+ln(x+1)-x≤0恒成立,只要求出ax
2+ln(x+1)-x的最小值即可,令新的函數(shù),利用導(dǎo)數(shù)研究其最值問(wèn)題;
(Ⅲ)由題設(shè)(Ⅱ)可知當(dāng)a=0時(shí),ln(x+1)≤x在[0,+∞)上恒成立,利用此不等式對(duì)所要證明的不等式進(jìn)行放縮,從而進(jìn)行證明;
解答:解:(Ⅰ)當(dāng)
時(shí),
(x>-1),
(x>-1),
由f'(x)>0解得-1<x<1,由f'(x)<0,
解得x>1.
故函數(shù)f(x)的單調(diào)遞增區(qū)間為(-1,1),單調(diào)遞減區(qū)間為(1,+∞).(4分)
(Ⅱ)因函數(shù)f(x)圖象上的點(diǎn)都在
所表示的平面區(qū)域內(nèi),
則當(dāng)x∈[0,+∞)時(shí),不等式f(x)≤x恒成立,即ax
2+ln(x+1)-x≤0恒成立,
設(shè)g(x)=ax
2+ln(x+1)-x(x≥0),
只需g(x)
max≤0即可.(5分)
由
=
,
(。┊(dāng)a=0時(shí),
,當(dāng)x>0時(shí),g'(x)<0,函數(shù)g(x)在(0,+∞)上單調(diào)遞減,
故g(x)≤g(0)=0成立.(6分)
(ⅱ)當(dāng)a>0時(shí),由
,因x∈[0,+∞),所以
,
①若
,即
時(shí),在區(qū)間(0,+∞)上,g'(x)>0,
則函數(shù)g(x)在(0,+∞)上單調(diào)遞增,g(x)在[0,+∞)上無(wú)最大值(或:當(dāng)x→+∞時(shí),g(x)→+∞),此時(shí)不滿足條件;
②若
,即
時(shí),函數(shù)g(x)在
上單調(diào)遞減,在區(qū)間
上單調(diào)遞增,
同樣g(x)在[0,+∞)上無(wú)最大值,不滿足條件.(8分)
(ⅲ)當(dāng)a<0時(shí),由
,
∵x∈[0,+∞),
∴2ax+(2a-1)<0,
∴g'(x)<0,故函數(shù)g(x)在[0,+∞)上單調(diào)遞減,
故g(x)≤g(0)=0成立.
綜上所述,實(shí)數(shù)a的取值范圍是(-∞,0].(10分)
(Ⅲ)據(jù)(Ⅱ)知當(dāng)a=0時(shí),ln(x+1)≤x在[0,+∞)上恒成立
(或另證ln(x+1)≤x在區(qū)間(-1,+∞)上恒成立),(11分)
又
,
∵
=
=
=
,
∴
.(14分)
點(diǎn)評(píng):此題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和最值問(wèn)題,解題過(guò)程中多次用到了轉(zhuǎn)化的思想,第二題實(shí)質(zhì)還是函數(shù)的恒成立問(wèn)題,第三問(wèn)不等式的證明仍然離不開(kāi)前面兩問(wèn)所證明的不等式,利用它們進(jìn)行放縮證明,本題難度比較大,是一道綜合題;