【題目】已知f(x)= (x≠-2),h(x)=x2+1.
(1)求f(2),h(1)的值;
(2)求f[h(2)]的值;
(3)求f(x),h(x)的值域.
【答案】
(1)解:∵f(x)= ,∴f(2)= .
∵h(x)=x2+1,∴h(1)=12+1=2
(2)解:f(h(2))=f(22+1)=f(5)=
(3)解:∵f(x)= 的定義域為{x|x≠-2},∴y≠0,
∴函數(shù)f(x)的值域為(-∞,0)∪(0,+∞).
∵h(x)=x2+1的定義域是R,
由二次函數(shù)圖象知最小值為1,
∴函數(shù)h(x)值域為[1,+∞)
【解析】(1)由函數(shù)解析式直接求函數(shù)值班;
(2)求多層函數(shù)值,要先求內(nèi)層函數(shù)值,再求外層函數(shù)值即可;
(3)分母是一次式的分式型號函數(shù),可直接求值域;二次函數(shù)的值域結(jié)合二次函數(shù)的性質(zhì)求得.
【考點精析】本題主要考查了函數(shù)的值域的相關(guān)知識點,需要掌握求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實上,如果在函數(shù)的值域中存在一個最。ù螅⿺(shù),這個數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實質(zhì)是相同的才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱 中, ,底面三角形 是邊長為2的等邊三角形, 為 的中點.
(1)求證: ;
(2)若直線 與平面 所成的角為 ,求三棱柱 的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個地區(qū)共有5個鄉(xiāng)鎮(zhèn),共30萬人,其人口比例為3∶2∶5∶2∶3,從這30萬人中抽取一個300人的樣本,分析某種疾病的發(fā)病率.已知這種疾病與不同的地理位置及水土有關(guān),則應(yīng)采取什么樣的抽樣方法?并寫出具體過程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知△ABC中,a,b,c是三個內(nèi)角A,B,C的對邊,關(guān)于x的不等式 的解集是空集.
(1)求角C的最大值;
(2)若 ,△ABC的面積 ,求當角C取最大值時a+b的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】雙曲線 ﹣ =1(a>0,b>0)上任意一點P可向圓x2+y2=( )2作切線PA,PB,若存在點P使得 =0,則雙曲線的離心率的取值范圍是( )
A.[ ,+∞)
B.(1, ]
C.[ , )
D.(1, )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=xex+ax2+2x+1在x=﹣1處取得極值.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)y=f(x)﹣m﹣1在[﹣2,2]上恰有兩個不同的零點,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知 為△ 所在平面外一點,且 , , 兩兩垂直,則下列結(jié)論:① ;② ;③ ;④ .其中正確的是( )
A.①②③
B.①②④
C.②③④
D.①②③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=alnx﹣(a+2)x+x2 .
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對于任意a∈[4,10],x1 , x2∈[1,2],恒有| |≤ 成立,試求λ的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com