已知f(x)=(1+)-2(x>1).
(Ⅰ)求函數(shù)f(x)的反函數(shù)f-1(x)的解析式及其定義域;
(Ⅱ)判斷函數(shù)f-1(x)在其定義域上的單調(diào)性并加以證明;
(Ⅲ)若當(dāng)x∈(,]時(shí),不等式(1-)·f-1(x)>a(a-)恒成立,試求a的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:河北省冀州市中學(xué)2012年高三密卷一數(shù)學(xué)理科試題 題型:013
已知f(x)=(1+cos2x)sin2x,則f(x)是
A.最小正周期為π的奇函數(shù)
B.最小正周期為的奇函數(shù)
C.最小正周期為的偶函數(shù)
D.最小正周期為π的偶函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分12分)
設(shè)n為正整數(shù),規(guī)定:fn(x)=,已知f(x)= .
(1)解不等式f(x)≤x;
(2)設(shè)集合A={0,1,2},對(duì)任意x∈A,證明f3(x)=x;
(3)求f2007()的值;
(4)(理)若集合B=,證明B中至少包含8個(gè)元素.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分12分)
設(shè)n為正整數(shù),規(guī)定:fn(x)=,已知f(x)= .
(1)解不等式f(x)≤x;
(2)設(shè)集合A={0,1,2},對(duì)任意x∈A,證明f3(x)=x;
(3)求f2007()的值;
(4)(理)若集合B=,證明B中至少包含8個(gè)元素.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年上虞市質(zhì)量調(diào)測(cè)一理) 已知f(x)=1+2x-x2,那么g(x) =f[f(x)]( )
A.在區(qū)間(-2,1)上單調(diào)遞增 B.在(0,2)上單調(diào)遞增
C.在(-1,1)上單調(diào)遞增 D.在(1,2)上單調(diào)遞增
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知f(x)=(1+x)n且f′(x)的展開(kāi)式是關(guān)于x的多項(xiàng)式,其中x2的系數(shù)為60,則n=( )
(A)7 (B)6 (C)5 (D)4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com