如圖,橢圓的離心率為,直線x=±a和y=±b所圍成的矩形ABCD的面積為8.
(Ⅰ)求橢圓M的標(biāo)準(zhǔn)方程;
(Ⅱ) 設(shè)直線l:y=x+m(m∈R)與橢圓M有兩個(gè)不同的交點(diǎn)P,Q,l與矩形ABCD有兩個(gè)不同的交點(diǎn)S,T.求的最大值及取得最大值時(shí)m的值.

【答案】分析:(Ⅰ)通過(guò)橢圓的離心率,矩形的面積公式,直接求出a,b,然后求橢圓M的標(biāo)準(zhǔn)方程;
(Ⅱ) 通過(guò),利用韋達(dá)定理求出|PQ|的表達(dá)式,通過(guò)判別式推出的m的范圍,①當(dāng)時(shí),求出取得最大值.利用由對(duì)稱(chēng)性,推出,取得最大值.③當(dāng)-1≤m≤1時(shí),取得最大值.求的最大值及取得最大值時(shí)m的值.
解答:解:(I)…①
矩形ABCD面積為8,即2a•2b=8…②
由①②解得:a=2,b=1,
∴橢圓M的標(biāo)準(zhǔn)方程是
(II)
由△=64m2-20(4m2-4)>0得
設(shè)P(x1,y1),Q(x2,y2),則,

當(dāng)l過(guò)A點(diǎn)時(shí),m=1,當(dāng)l過(guò)C點(diǎn)時(shí),m=-1.
①當(dāng)時(shí),有,
其中t=m+3,由此知當(dāng),即時(shí),取得最大值
②由對(duì)稱(chēng)性,可知若,則當(dāng)時(shí),取得最大值
③當(dāng)-1≤m≤1時(shí),,
由此知,當(dāng)m=0時(shí),取得最大值
綜上可知,當(dāng)或m=0時(shí),取得最大值
點(diǎn)評(píng):本題考查橢圓的標(biāo)準(zhǔn)方程,直線與圓錐曲線的綜合問(wèn)題,考查分類(lèi)討論思想,轉(zhuǎn)化思想,韋達(dá)定理以及判別式的應(yīng)用,設(shè)而不求的解題方法,考查分析問(wèn)題解決問(wèn)題,計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年山東省高三下學(xué)期開(kāi)學(xué)考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

如圖,橢圓的離心率為軸被曲線截得的線段長(zhǎng)等于的短軸長(zhǎng)。軸的交點(diǎn)為,過(guò)坐標(biāo)原點(diǎn)的直線相交于點(diǎn),直線分別與相交于點(diǎn)

1)求、的方程;

2)求證:。

3)記的面積分別為,若,求的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省桐鄉(xiāng)市高三模擬考試(2月)理科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,橢圓的離心率為,是其左右頂點(diǎn),是橢圓上位于軸兩側(cè)的點(diǎn)(點(diǎn)軸上方),且四邊形面積的最大值為4.

(1)求橢圓方程;

(2)設(shè)直線的斜率分別為,若,設(shè)△與△的面積分別為,求的最大值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年山東省萊蕪市高三4月模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

如圖,橢圓的離心率為軸被曲線截得的線段長(zhǎng)等于的短軸長(zhǎng)。軸的交點(diǎn)為,過(guò)坐標(biāo)原點(diǎn)的直線相交于點(diǎn),直線分別與相交于點(diǎn)。

(1)求的方程;

(2)求證:。

(3)記的面積分別為,若,求的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆重慶市高二上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿(mǎn)分12分)如圖,橢圓的離心率為,直線所圍成的矩形ABCD的面積為8.

 

(Ⅰ)求橢圓M的標(biāo)準(zhǔn)方程;

(Ⅱ) 設(shè)直線與橢圓M有兩個(gè)不同的交點(diǎn)與矩形ABCD有兩個(gè)不同的交點(diǎn).求的最大值及取得最大值時(shí)m的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年全國(guó)普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(山東卷解析版) 題型:解答題

如圖,橢圓的離心率為,直線所圍成的矩形ABCD的面積為8.

(Ⅰ)求橢圓M的標(biāo)準(zhǔn)方程;

(Ⅱ) 設(shè)直線與橢圓M有兩個(gè)不同的交點(diǎn)與矩形ABCD有兩個(gè)不同的交點(diǎn).求的最大值及取得最大值時(shí)m的值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案