已知橢圓E:)離心率為,上頂點M,右頂點N,直線MN與圓相切,斜率為k的直線l經(jīng)過橢圓E在正半軸的焦點F,且交E于A、B不同兩點.

(1)求E的方程;

(2)若點G(m,0)且| GA|=| GB|,,求m的取值范圍.

 

【答案】

(1);(2)。

【解析】

試題分析:(1)    

   ∴            6分

(2)AB中垂線l 方程:

    ∴              13分

考點:本題主要考橢圓的標準方程,橢圓的幾何性質(zhì),直線橢圓的位置關(guān)系,圓的切線。

點評:中檔題,求橢圓的標準方程,主要運用了橢圓的幾何性質(zhì),a,b,c,e的關(guān)系。曲線關(guān)系問題,往往通過聯(lián)立方程組,得到一元二次方程,運用韋達定理。本題(2)利用| GA|=| GB|,建立了k的函數(shù)關(guān)系,利用函數(shù)的性質(zhì)得到k的范圍。

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•淮南二模)已知橢圓C:
x2
a2
+
y2
b2
=1,(a>b>0)與雙曲4x2-
4
3
y2=1有相同的焦點,且橢C的離心e=
1
2
,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標;
(3)求點P在直線MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆福建省高二第一學期期末考試理科數(shù)學試卷 題型:解答題

已知橢圓E的下焦點為、上焦點為,其離心 率。過焦點F2且與軸不垂直的直線l交橢圓于A、B兩點。

(1)求實數(shù)的值;  

(2)求DABOO為原點)面積的最大值.

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C:數(shù)學公式+數(shù)學公式=1,(a>b>0)與雙曲4x2-數(shù)學公式y2=1有相同的焦點,且橢C的離心e=數(shù)學公式,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標;
(3)求點P在直線MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年安徽省淮南市高考數(shù)學二模試卷(理科)(解析版) 題型:解答題

已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點,且橢C的離心e=,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標;
(3)求點P在直線MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年安徽省淮北市高考數(shù)學二模試卷(理科)(解析版) 題型:解答題

已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點,且橢C的離心e=,又A,B為橢圓的左右頂點,M為橢圓上任一點(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點P,過P作直線MB的垂線x軸于點Q,Q的坐標;
(3)求點P在直線MB上射R的軌跡方程.

查看答案和解析>>

同步練習冊答案