【題目】選修4—5:不等式選講
已知函數(shù)f(x)=|2x-a|+a.
(1)若不等式f(x)≤6的解集為{x|-2≤x≤3},求實(shí)數(shù)a的值;
(2)在(1)的條件下,若存在實(shí)數(shù)n使f(n)≤m-f(-n)成立,求實(shí)數(shù)m的取值范圍.
【答案】(1) a=1 (2)[4,+∞).
【解析】
試題分析:(1)根據(jù)方程的解與不等式解集關(guān)系得:-2 ,3為|2x-a|+a =6兩根,解得a=1。也可先利用絕對(duì)值定義求不等式解集a-3≤x≤3,再根據(jù)同解得等量關(guān)系a-3=-2 (2)不等式有解問題,一般轉(zhuǎn)化為對(duì)應(yīng)函數(shù)最值問題:f(n)+f(-n) 最小值≤m,再利用絕對(duì)值定義求f(n)+f(-n) =|2n-1|+|2n+1|+2最小值,也可利用絕對(duì)值三角不等式求最小值:|2n-1|+|2n+1|
試題解析:(1)由|2x-a|+a≤6,得|2x-a|≤6-a,
∴a-6≤2x-a≤6-a,即a-3≤x≤3,∴a-3=-2,∴a=1
(2)由(1)知f(x)=|2x-1|+1,
令φ(n)=f(n)+f(-n),
則φ(n)=|2n-1|+|2n+1|+2
=
∴φ(n)的最小值為4,故實(shí)數(shù)m的取值范圍是[4,+∞).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在正方體ABCD-A1B1C1D中,S是B1D1的中點(diǎn),E、F、G分別是BC、CD和SC的中點(diǎn).求證:
(1)直線EG∥平面BDD1B1;
(2)平面EFG∥平面BDD1B1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某初級(jí)中學(xué)有三個(gè)年級(jí),各年級(jí)男、女生人數(shù)如下表:
初一年級(jí) | 初二年級(jí) | 初三年級(jí) | |
女生 | 370 | z | 200 |
男生 | 380 | 370 | 300 |
已知在全校學(xué)生中隨機(jī)抽取1名,抽到初二年級(jí)女生的概率是0.19.
(1)求z的值;
(2)用分層抽樣的方法在初三年級(jí)中抽取一個(gè)容量為5的樣本,將該樣本看成一個(gè)總體,從中任選2名學(xué)生,求至少有1名女生的概率;
(3)用隨機(jī)抽樣的方法從初二年級(jí)女生中選出8人,測(cè)量它們的左眼視力,結(jié)果如下:1.2, 1.5, 1.2, 1.5, 1.5, 1.3, 1.0, 1.2.把這8人的左眼視力看作一個(gè)總體,從中任取一個(gè)數(shù),求該數(shù)與樣本平均數(shù)之差的絕對(duì)值不超過0.1的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項(xiàng)數(shù)列的前項(xiàng)和為,對(duì)任意,點(diǎn)都在函數(shù)的圖像上.
(I)求數(shù)列的首項(xiàng)和通項(xiàng)公式;
(II)若數(shù)列滿足,求數(shù)列的前項(xiàng)和;
(III)已知數(shù)列滿足.若對(duì)任意,存在,使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列中, .等比數(shù)列的通項(xiàng)公式.
(I)求數(shù)列的通項(xiàng)公式;
(II)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于某設(shè)備的使用年限和所支出的維修費(fèi)用(萬元),有如下的統(tǒng)計(jì)資料:
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)如由資料可知對(duì)呈線形相關(guān)關(guān)系.試求:線形回歸方程;(,)
(2)估計(jì)使用年限為10年時(shí),維修費(fèi)用是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果袋中裝有數(shù)量差別很大而大小相同的白球和黃球(只是顏色不同)若干個(gè),從中任取一球,取了10次有7個(gè)白球,估計(jì)袋中數(shù)量最多的是________球.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—1:幾何證明選講
如圖,已知AP是⊙O的切線,P為切點(diǎn),AC是⊙O的割線,與⊙O交于B、C兩點(diǎn),圓心O在∠PAC的內(nèi)部,點(diǎn)M是BC的中點(diǎn).
(1) 證明:A、P、O、M四點(diǎn)共圓;
(2)求∠OAM+∠APM的大小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(, )為奇函數(shù),且相鄰兩對(duì)稱軸間的距離為.
(1)當(dāng)時(shí),求的單調(diào)遞減區(qū)間;
(2)將函數(shù)的圖象沿軸方向向右平移個(gè)單位長(zhǎng)度,再把橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變),得到函數(shù)的圖象.當(dāng)時(shí),求函數(shù)的值域.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com