(09年豐臺(tái)區(qū)期末理)半徑為1的球面上的四點(diǎn)A,BC,D是一個(gè)正四面體的頂點(diǎn),則這個(gè)正四面體的棱長(zhǎng)是(   )

       A.                       B.                       C.                     D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(09年豐臺(tái)區(qū)期末理)(13分)

       已知向量=,=,且x。

       (Ⅰ)求?及|?|;

(Ⅱ)若f ( x ) = ?|?|的最小值為,且,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年豐臺(tái)區(qū)期末理)(14分)

    設(shè)橢圓M(ab>0)的離心率為,長(zhǎng)軸長(zhǎng)為,設(shè)過右焦點(diǎn)F

斜角為的直線交橢圓MA,B兩點(diǎn)。

       (Ⅰ)求橢圓M的方程;

(Ⅱ)求證| AB | =;

(Ⅲ)設(shè)過右焦點(diǎn)F且與直線AB垂直的直線交橢圓MC,D,求|AB| + |CD|的最小

值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年豐臺(tái)區(qū)期末理)(14分)

    設(shè)橢圓M(ab>0)的離心率為,長(zhǎng)軸長(zhǎng)為,設(shè)過右焦點(diǎn)F

斜角為的直線交橢圓MA,B兩點(diǎn)。

       (Ⅰ)求橢圓M的方程;

(Ⅱ)求證| AB | =

(Ⅲ)設(shè)過右焦點(diǎn)F且與直線AB垂直的直線交橢圓MC,D,求|AB| + |CD|的最小

值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年豐臺(tái)區(qū)期末理)(14分)

    設(shè)橢圓M(ab>0)的離心率為,長(zhǎng)軸長(zhǎng)為,設(shè)過右焦點(diǎn)F

斜角為的直線交橢圓MAB兩點(diǎn)。

       (Ⅰ)求橢圓M的方程;

(Ⅱ)求證| AB | =;

(Ⅲ)設(shè)過右焦點(diǎn)F且與直線AB垂直的直線交橢圓MCD,求|AB| + |CD|的最小

值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年豐臺(tái)區(qū)期末理)(13分)

       已知函數(shù)f ( x ) = 3x , f ( a + 2 ) = 18 , g ( x ) =? 3ax 4x的義域?yàn)閇0,1]。

       (Ⅰ)求a的值;

    (Ⅱ)若函數(shù)g ( x )在區(qū)間[0,1]上是單調(diào)遞減函數(shù),求實(shí)數(shù)的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案