(09年豐臺(tái)區(qū)期末理)(13分)

       已知函數(shù)f ( x ) = 3x , f ( a + 2 ) = 18 , g ( x ) =? 3ax 4x的義域?yàn)閇0,1]。

       (Ⅰ)求a的值;

    (Ⅱ)若函數(shù)g ( x )在區(qū)間[0,1]上是單調(diào)遞減函數(shù),求實(shí)數(shù)的取值范圍。

解析:解法一:(Ⅰ)由已知得 3a+2 = 183a = 2a = log32 …………… 3分

              (Ⅱ)此時(shí)    g ( x ) =? 2x 4x              ……………………………… 6分

              設(shè)0x1x21,因?yàn)?I>g ( x )在區(qū)間[0,1]上是單調(diào)減函數(shù)

              所以       g ( x1 ) = g ( x2 ) =0成立 … 10分

              即    +恒成立           由于+>20 + 20 = 2

              所以       實(shí)數(shù)的取值范圍是2  ……………………………… 13分

       解法二:(Ⅰ)由已知得     3a+2 = 183a = 2a = log32 …………… 3分

              (Ⅱ)此時(shí)    g ( x ) =? 2x 4x              ……………………………… 6分

              因?yàn)?I>g ( x )在區(qū)間[0,1]上是單調(diào)減函數(shù)

              所以有    g ( x )′=ln2 ? 2x ln 4 ? 4x = ln 2[2 ? (2x)2 + ? 2x ] 0成立…10分

              設(shè)2x = u∈[ 1 , 2 ]              ## 式成立等價(jià)于  2u2 +u0 恒成立。

              因?yàn)?I>u∈[ 1 , 2 ]    只須       2u 恒成立,………………………… 13分

              所以實(shí)數(shù)的取值范圍是2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年豐臺(tái)區(qū)期末理)(13分)

       已知向量=,=,且x

       (Ⅰ)求?及|?|;

(Ⅱ)若f ( x ) = ?|?|的最小值為,且,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年豐臺(tái)區(qū)期末理)(14分)

    設(shè)橢圓M(ab>0)的離心率為,長(zhǎng)軸長(zhǎng)為,設(shè)過(guò)右焦點(diǎn)F

斜角為的直線(xiàn)交橢圓MA,B兩點(diǎn)。

       (Ⅰ)求橢圓M的方程;

(Ⅱ)求證| AB | =;

(Ⅲ)設(shè)過(guò)右焦點(diǎn)F且與直線(xiàn)AB垂直的直線(xiàn)交橢圓MC,D,求|AB| + |CD|的最小

值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年豐臺(tái)區(qū)期末理)(14分)

    設(shè)橢圓M(ab>0)的離心率為,長(zhǎng)軸長(zhǎng)為,設(shè)過(guò)右焦點(diǎn)F

斜角為的直線(xiàn)交橢圓MAB兩點(diǎn)。

       (Ⅰ)求橢圓M的方程;

(Ⅱ)求證| AB | =;

(Ⅲ)設(shè)過(guò)右焦點(diǎn)F且與直線(xiàn)AB垂直的直線(xiàn)交橢圓MC,D,求|AB| + |CD|的最小

值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(09年豐臺(tái)區(qū)期末理)(14分)

    設(shè)橢圓M(ab>0)的離心率為,長(zhǎng)軸長(zhǎng)為,設(shè)過(guò)右焦點(diǎn)F

斜角為的直線(xiàn)交橢圓MAB兩點(diǎn)。

       (Ⅰ)求橢圓M的方程;

(Ⅱ)求證| AB | =;

(Ⅲ)設(shè)過(guò)右焦點(diǎn)F且與直線(xiàn)AB垂直的直線(xiàn)交橢圓MCD,求|AB| + |CD|的最小

值。

查看答案和解析>>

同步練習(xí)冊(cè)答案