【題目】已知函數(shù)f ( x)=ax3+bx2+cx+d 的圖象如圖所示,則 的取值范圍是(
A.(﹣ ?)
B.(﹣ ,1)
C.(﹣ ,
D.(﹣ ,1)

【答案】D
【解析】解:由圖象可知:經(jīng)過原點(diǎn),∴f(0)=0=d, ∴f(x)=ax3+bx2+cx.
由圖象可得:函數(shù)f(x)在[﹣1,1]上單調(diào)遞減,函數(shù)f(x)在x=﹣1處取得極大值.
∴f′(x)=3ax2+2bx+c≤0在[﹣1,1]上恒成立,且f′(﹣1)=0.
得到3a﹣2b+c=0,即c=2b﹣3a,
∵f′(1)=3a+2b+c<0,
∴4b<0,即b<0,
∵f′(2)=12a+4b+c>0,
∴3a+2b>0,
設(shè)k= ,
建立如圖所示的坐標(biāo)系,則點(diǎn)A(﹣1,﹣1),
則k= 式中變量a、b滿足下列條件 ,
作出可行域如圖:

∴k的最大值就是kAO=1,k的最小值就是kCD ,
而kCD就是直線3a+2b=0的斜率,kCD=﹣ ,
∴﹣ <k<1.
故選:D.
【考點(diǎn)精析】利用利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性對題目進(jìn)行判斷即可得到答案,需要熟知一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)所給條件求直線的方程:
(1)直線過點(diǎn)(﹣4,0),傾斜角的正弦值為 ;
(2)直線過點(diǎn)(﹣2,1),且到原點(diǎn)的距離為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知銳角△ABC的三個(gè)內(nèi)角A,B,C的對邊分別為a,b,c,且 =(a,b+c),
(1)求角A;
(2)若a=3,求△ABC面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖在三棱錐S﹣ABC中,△ABC是邊長為2的正三角形,平面SAC⊥平面ABC,SA=SC= ,M為AB的中點(diǎn).
(I)證明:AC⊥SB;
(Ⅱ)求點(diǎn)B到平面SCM的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,an+1=
(Ⅰ)求證:an+1<an;
(Ⅱ)求證: ≤an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為 (其中為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系并取相同的單位長度,曲線的極坐標(biāo)方程為.

(1)把曲線的方程化為普通方程, 的方程化為直角坐標(biāo)方程;

(2)若曲線, 相交于兩點(diǎn), 的中點(diǎn)為,過點(diǎn)做曲線的垂線交曲線兩點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四棱錐P﹣ABCD中,底面ABCD是邊長為2的正方形,其它四個(gè)側(cè)面都是側(cè)棱長為 的等腰三角形.
(Ⅰ)求二面角P﹣AB﹣C的大;
(Ⅱ)在線段AB上是否存在一點(diǎn)E,使平面PCE⊥平面PCD?若存在,請指出點(diǎn)E的位置并證明,若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校舉行班級籃球賽,某名運(yùn)動(dòng)員每場比賽得分記錄的莖葉圖如下:
(1)求該運(yùn)動(dòng)員得分的中位數(shù)和平均數(shù);
(2)估計(jì)該運(yùn)動(dòng)員每場得分超過10分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求和:Sn= + +…+ ,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

同步練習(xí)冊答案