【題目】已知,函數(shù).
(1)求實(shí)數(shù)的值,使得為奇函數(shù);
(2)若關(guān)于的方程有兩個(gè)不同實(shí)數(shù)解,求的取值范圍;
(3)若關(guān)于的不等式對(duì)任意恒成立,求的取值范圍.
【答案】(1) ;(2) (3)
【解析】
(1)若為奇函數(shù),則,進(jìn)而可得實(shí)數(shù)的值,
(2)若關(guān)于的方程有兩個(gè)不同的實(shí)數(shù)解,即方程有兩個(gè)不同實(shí)數(shù)解,解出兩個(gè)實(shí)數(shù)根,然后滿足對(duì)數(shù)的真數(shù)為正即可.
(3)若關(guān)于的不等式對(duì)任意恒成立,即,對(duì)任意恒成立,打開(kāi)絕對(duì)值,進(jìn)而可得的取值范圍.
(1) 為奇函數(shù),則
即
即
所以
即 ,所以
解得:
(2) 方程有兩個(gè)不同實(shí)數(shù)解
即方程有兩個(gè)不同實(shí)數(shù)解
即方程有兩個(gè)不同實(shí)數(shù)解.
設(shè),則可以化為:
,即
當(dāng)時(shí)方程不可能有兩個(gè)不等實(shí)數(shù)根,所以
則或,
即或,
根據(jù)對(duì)數(shù)的真數(shù)必須大于0有,即
即: 則且
又,則
故方程滿足條件的實(shí)數(shù)的范圍是.
(3) 不等式對(duì)任意恒成立
即不等式對(duì)任意恒成立.
即對(duì)任意恒成立.
所以對(duì)任意恒成立.
即對(duì)任意恒成立.
即 ,
由
(當(dāng)且僅當(dāng)時(shí)取等號(hào)).
在上單調(diào)遞增,所以當(dāng)時(shí),
所以
當(dāng)時(shí),不等式對(duì)任意恒成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求曲線的斜率為2的切線方程;
(2)證明:;
(3)確定實(shí)數(shù)的取值范圍,使得存在,當(dāng)時(shí),恒有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
對(duì)定義在區(qū)間上的函數(shù),若存在閉區(qū)間和常數(shù),使得對(duì)任意的都有,且對(duì)任意的都有恒成立,則稱函數(shù)為區(qū)間上的“U型”函數(shù)。
(1)求證:函數(shù)是上的“U型”函數(shù);
(2)設(shè)是(1)中的“U型”函數(shù),若不等式對(duì)一切的恒成立,求實(shí)數(shù)的取值范圍;
(3)若函數(shù)是區(qū)間上的“U型”函數(shù),求實(shí)數(shù)和的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】第二屆中國(guó)國(guó)際進(jìn)口博覽會(huì)于2019年11月5日至10日在上海國(guó)家會(huì)展中心舉行.它是中國(guó)政府堅(jiān)定支持貿(mào)易自由化和經(jīng)濟(jì)全球化,主動(dòng)向世界開(kāi)放市場(chǎng)的重要舉措,有利于促進(jìn)世界各國(guó)加強(qiáng)經(jīng)貿(mào)交流合作,促進(jìn)全球貿(mào)易和世界經(jīng)濟(jì)增長(zhǎng),推動(dòng)開(kāi)放世界經(jīng)濟(jì)發(fā)展.某機(jī)構(gòu)為了解人們對(duì)“進(jìn)博會(huì)”的關(guān)注度是否與性別有關(guān),隨機(jī)抽取了100名不同性別的人員(男、女各50名)進(jìn)行問(wèn)卷調(diào)查,并得到如下列聯(lián)表:
男性 | 女性 | 合計(jì) | |
關(guān)注度極高 | 35 | 14 | 49 |
關(guān)注度一般 | 15 | 36 | 51 |
合計(jì) | 50 | 50 | 100 |
(1)根據(jù)列聯(lián)表,能否有99.9%的把握認(rèn)為對(duì)“進(jìn)博會(huì)”的關(guān)注度與性別有關(guān);
(2)若從關(guān)注度極高的被調(diào)查者中按男女分層抽樣的方法抽取7人了解他們從事的職業(yè)情況,再?gòu)?/span>7人中任意選取2人談?wù)勱P(guān)注“進(jìn)博會(huì)”的原因,求這2人中至少有一名女性的概率.
附:.
參考數(shù)據(jù):
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,點(diǎn)在橢圓C上.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若直線上與C交于A,B兩點(diǎn),是否存在l,使得點(diǎn)在以AB為直徑的圓外.若存在,求出k的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,側(cè)棱平面,為的中點(diǎn),,,,.
(1)求二面角的余弦值;
(2)在線段上是否存在點(diǎn),使得平面?若存在,求出點(diǎn)的位置,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方體中,點(diǎn)E,F分別是棱上的動(dòng)點(diǎn),且.當(dāng)三棱錐的體積取得最大值時(shí),記二面角、、平面角分別為,,,則( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),其中e為自然對(duì)數(shù)的底數(shù).
(1)當(dāng)a=0時(shí),求函數(shù)f (x)的單調(diào)減區(qū)間;
(2)已知函數(shù)f (x)的導(dǎo)函數(shù)f (x)有三個(gè)零點(diǎn)x1,x2,x3(x1 x2 x3).①求a的取值范圍;②若m1,m2(m1 m2)是函數(shù)f (x)的兩個(gè)零點(diǎn),證明:x1m1x1 1.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com