若執(zhí)行如圖的程序框圖,輸出S的值為4,則判斷框中應(yīng)填入的條件是(  )
A、k<14?
B、k<15?
C、k<16?
D、k<17?
考點(diǎn):程序框圖
專題:算法和程序框圖
分析:根據(jù)程序框圖,寫出運(yùn)行結(jié)果,根據(jù)程序輸出的結(jié)果是S=4,可得判斷框內(nèi)應(yīng)填入的條件.
解答: 解:根據(jù)程序框圖,運(yùn)行結(jié)果如下:
              S                                                              k  
第一次循環(huán)    log23                                                           3
第二次循環(huán)    log23•log34                                                     4
第三次循環(huán)    log23•log34•log45                                               5
第四次循環(huán)    log23•log34•log45•log56                                         6
第五次循環(huán)    log23•log34•log45•log56•log67                                   7
第六次循環(huán)    log23•log34•log45•log56•log67•log78                             8
第七次循環(huán)    log23•log34•log45•log56•log67•log78•log89                       9

第十三次循環(huán)  log23•log34•log45•log56•…•log1415                            15
第十四次循環(huán)  log23•log34•log45•log56••…•log1415•log1516=log216=4          16
故如果輸出S=4,那么只能進(jìn)行十四次循環(huán),故判斷框內(nèi)應(yīng)填入的條件是k<16.
故選:C.
點(diǎn)評(píng):本題考查程序框圖,尤其考查循環(huán)結(jié)構(gòu),對(duì)循環(huán)體每次循環(huán)需要進(jìn)行分析并找出內(nèi)在規(guī)律,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如果兩個(gè)函數(shù)的圖象經(jīng)過平移后能夠重合,那么這兩個(gè)函數(shù)稱為“伴侶”函數(shù),下列函數(shù)中與g(x)=sinx+cosx能構(gòu)成“伴侶”函數(shù)的是( 。
A、f(x)=
2
(sinx+cosx)
B、f(x)=1+sinx
C、f(x)=sin
x
2
+cos
x
2
D、f(x)=2cos
x
2
(sin
x
2
+cos
x
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項(xiàng)公式an=13-3n,則數(shù)列{
1
anan+1
}的前n項(xiàng)和Tn=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)(x1,y1),(x2,y2),…(xn,yn)是變量x,和y的n個(gè)樣本點(diǎn),直線l是由這樣樣本點(diǎn)通過最小二乘法得到的線性回歸方程(如圖),則下列結(jié)論中正確的是( 。
A、x和y正相關(guān)
B、x和y的相關(guān)系數(shù)為直線l的斜率
C、當(dāng)n為偶數(shù)時(shí),分布在l兩側(cè)的樣本點(diǎn)的個(gè)數(shù)一定相同
D、x和y的相關(guān)系數(shù)在-1到0之間

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面說法中,正確的是( 。
①一個(gè)平面內(nèi)只有一對(duì)不共線向量可作為表示該平面內(nèi)所有向量的基底;
②一個(gè)平面內(nèi)由無數(shù)多對(duì)不共線向量可作為表示該平面內(nèi)所有向量的基底;
③零向量不可作為基底中的向量;
④對(duì)于平面內(nèi)的任一向量
a
和一組基底
e1
,
e2
,使
a
e1
e2
成立的實(shí)數(shù)對(duì)一定是唯一的.
A、②④B、②③④
C、①③D、①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知e=2.71828…是自然對(duì)數(shù)的底數(shù).
(Ⅰ)求函數(shù)f(x)=ln(x+1)-x+
x2
2
在[0,+∞)上的最小值;
(Ⅱ)求證ln2>
13
20

(Ⅲ)求證ln2+ln3+ln4+…+ln(n+1)>
9n2+4n
10(n+1)
(n≥1,n∈N).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖為北京市2001年到2013年人均生活用水量和常住人口的情況:

(Ⅰ)比較前6年與后7年人均生活用水量的平均值的大小;(不要求計(jì)算過程)
(Ⅱ)若從這13年中隨機(jī)選擇連續(xù)的三年進(jìn)行觀察,求所選的這三年的人均用水量恰是依次遞減的概率;(Ⅲ)由圖判斷從哪年開始連續(xù)四年的常住人口的方差最大?并結(jié)合兩幅圖表推斷北京市在2010至2013四年間的總生活用水量的增減情況.(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn是等差數(shù)列{an}(n∈N*)的前n項(xiàng)和,且S6>S7>S5,有下列五個(gè)命題:
①d<0;
②S11>0;
③S12<0;
④數(shù)列{Sn}中的最大項(xiàng)為S11
⑤|a6|>|a7|.
其中正確的命題是
 
(寫出你認(rèn)為正確的所有命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若等差數(shù)列{an}各項(xiàng)均為正,且a3a5+a3a8+a5a10+a8a10=64,則S12=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案