已知集合A={x|a<x≤a+8},B={x|8-b<x<b},M={x|x<-1或x>5},全集U=R;
(1)若A∪M=R,求實(shí)數(shù)a的取值范圍.
(2)若B∪(CUM)=B,求b的取值范圍.
分析:(1)將條件A∪M=R轉(zhuǎn)化為CRM⊆A,求出CRM,結(jié)合數(shù)軸得到a的不等式組,解不等式即可;
(2)將條件B∪(CUM)=B轉(zhuǎn)化為CUM⊆B,結(jié)合數(shù)軸求解.
解答:解:(1)由A∪M=R,則CRM⊆A,
而CRM={x|-1≤x≤5},
所以
a<-1
a+8≥5
,解得-3≤a<-1
(2)由B∪(CUM)=B得CUM⊆B,
所以
8-b<-1
b>5
,解得b>9
點(diǎn)評:本題考查集合的運(yùn)算與集合的關(guān)系的轉(zhuǎn)化,以及數(shù)形結(jié)合思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2+2x-3<0},B={x|
x+2x-3
<0}

(1)在區(qū)間(-4,4)上任取一個實(shí)數(shù)x,求“x∈A∩B”的概率;
(2)設(shè)(a,b)為有序?qū)崝?shù)對,其中a是從集合A中任取的一個整數(shù),b是從集合B中任取的一個整數(shù),求“b-a∈A∪B”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x>2,集合B={x|x>3},以下命題正確的個數(shù)是(  )
①?x0∈A,x0∉B                 ②?x0∈B,x0∉A ③?x∈A都有x∈B               ④?x∈B都有x∈A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x||1-
x-13
|>2,x∈R}
,集合B={x|x2-2x+1-m2>0,m<0,x∈R},全集I=R,若“x∈A”是“x∈B”充分非必要條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2003•海淀區(qū)一模)已知集合A={x|a-1≤x≤a+2},B={x|3<x<5},則能使A?B成立的實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2+3x-4<0},B={x|
x+2x-4
<0
}.
(1)在區(qū)間(-4,5)上任取一個實(shí)數(shù)x,求“x∈A∩B”的概率;
(2)設(shè)(a,b)為有序?qū)崝?shù)對,其中a,b分別是集合A,B中任取的一個整數(shù),求“a-b∈A∪B”的概率.

查看答案和解析>>

同步練習(xí)冊答案