【題目】已知fx)是R上的奇函數(shù)且單調(diào)遞增,則下列函數(shù)是偶函數(shù)且在(0,+∞)上單調(diào)遞增的有( 。

y|fx|;

yfx2+x);

yf|x|);

yefx+efx

A.①②③B.①③④C.②③④D.①②④

【答案】B

【解析】

由已知可得fx)是R上的奇函數(shù)且單調(diào)遞增,當(dāng)x0時(shí),fx)>f0)=0,然后結(jié)合函數(shù)的性質(zhì)分別進(jìn)行檢驗(yàn)即可.

因?yàn)?/span>fx)是R上的奇函數(shù)且單調(diào)遞增,

故當(dāng)x0時(shí),fx)>f0)=0

g(﹣x)=|f(﹣x||fx|gx)為偶函數(shù),且當(dāng)x0時(shí),gx)=|fx|fx)單調(diào)遞增,符合題意;

g(﹣x)=fx2xgx),故不滿足偶函數(shù);

g(﹣x)=f|x|)=f|x|)=gx)為偶函數(shù),且 x0時(shí)gx)=fx)單調(diào)遞增,符合題意;

g(﹣x)=ef(﹣x+ef(﹣xefx+efxgx),滿足偶函數(shù),且x0時(shí),fx)>0efx1,因?yàn)?/span> 單調(diào)遞增,

由復(fù)合函數(shù)的單調(diào)性可知gx)=efx+efx單調(diào)遞增,符合題意.

故選:B

本題主要考查函數(shù)的奇偶性和單調(diào)性的應(yīng)用,還考查了轉(zhuǎn)化求解問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓上任意一點(diǎn)到其兩個(gè)焦點(diǎn),的距離之和等于,且圓經(jīng)過(guò)橢圓的焦點(diǎn).

1)求橢圓的方程;

2)如圖,若直線與圓O相切,且與橢圓相交于A,B兩點(diǎn),直線平行且與橢圓相切于點(diǎn)MO,M位于直線的兩側(cè)).記的面積分別為,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市208年抽樣100戶居民的月均用電量(單位:千瓦時(shí)),以,,,,分組,得到如下頻率分布表:

分組

頻數(shù)

頻率

0.04

19

0.22

25

0.25

15

0.15

10

5

0.05

1)求表中的值,并估計(jì)2018年該市居民月均用電量的中位數(shù);

2)該城市最近十年的居民月均用電量逐年上升,以當(dāng)年居民月均用電量的中位數(shù)(單位:千瓦時(shí))作為統(tǒng)計(jì)數(shù)據(jù),下圖是部分?jǐn)?shù)據(jù)的折線圖.

由折線圖看出,可用線性回歸模型擬合與年份的關(guān)系.

①為簡(jiǎn)化運(yùn)算,對(duì)以上數(shù)據(jù)進(jìn)行預(yù)處理,令,請(qǐng)你在答題卡上完成數(shù)據(jù)預(yù)處理表;

②建立關(guān)于的線性回歸方程,預(yù)測(cè)2020年該市居民月均用電量的中位數(shù).

附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若,試判斷的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在全面建成小康社會(huì)的決勝階段,讓貧困地區(qū)同全國(guó)人民共同進(jìn)入全面小康社會(huì)是我們黨的莊嚴(yán)承諾.在“脫真貧、真脫貧”的過(guò)程中,精準(zhǔn)扶貧助推社會(huì)公平顯得尤其重要.若某農(nóng)村地區(qū)有200戶貧困戶,經(jīng)過(guò)一年扶貧后,對(duì)該地區(qū)的“精準(zhǔn)扶貧”的成效檢查驗(yàn)收.從這200戶貧困戶中隨機(jī)抽出50戶,對(duì)各戶的人均年收入(單位:千元)進(jìn)行調(diào)查得到如下頻數(shù)表:

人均年收入

頻數(shù)

2

3

10

20

10

5

若人均年收入在4000元以下的判定為貧困戶,人均年收入在4000元~8000元的判定為脫貧戶,人均年收入達(dá)到8000元的判定為小康戶.

1)用樣本估計(jì)總體,估計(jì)該地區(qū)還有多少戶沒(méi)有脫貧;

2)為了了解未脫貧的原因,從抽取的50戶中用分層抽樣的方法抽10戶進(jìn)行調(diào)研.

①貧困戶、脫貧戶、小康戶分別抽到的人數(shù)是多少?

②從被抽到的脫貧戶和小康戶中各選1人做經(jīng)驗(yàn)介紹,求小康戶中人均年收入最高的一戶被選到的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直三棱柱ABCA1B1C1中,ABBC,BB1BC,DCC1的中點(diǎn).

1)證明:B1C⊥平面ABD

2)若ABBC,EA1C1的中點(diǎn),求二面角ABDE的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2019年第十三屆女排世界杯共12支參賽球隊(duì),比賽賽制釆取單循環(huán)方式,即每支球隊(duì)進(jìn)行11場(chǎng)比賽,最后靠積分選出最后冠軍.積分規(guī)則如下(比賽采取53勝制):比賽中以3—03—1取勝的球隊(duì)積3分,負(fù)隊(duì)積0分;而在比賽中以3—2取勝的球隊(duì)積2分,負(fù)隊(duì)積1分.9輪過(guò)后,積分榜上的前2名分別為中國(guó)隊(duì)和美國(guó)隊(duì),中國(guó)隊(duì)積26分,美國(guó)隊(duì)積22分.第10輪中國(guó)隊(duì)對(duì)抗塞爾維亞隊(duì),設(shè)每局比賽中國(guó)隊(duì)取勝的概率為

1)第10輪比賽中,記中國(guó)隊(duì)3—1取勝的概率為,求的最大值點(diǎn)

2)以(1)中的作為的值.

i)在第10輪比賽中,中國(guó)隊(duì)所得積分為,求的分布列;

)已知第10輪美國(guó)隊(duì)積3分,判斷中國(guó)隊(duì)能否提前一輪奪得冠軍(第10輪過(guò)后,無(wú)論最后一輪即第11輪結(jié)果如何,中國(guó)隊(duì)積分最多)?若能,求出相應(yīng)的概率;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】體溫是人體健康狀況的直接反應(yīng),一般認(rèn)為成年人腋下溫度T(單位:)平均在之間即為正常體溫,超過(guò)即為發(fā)熱.發(fā)熱狀態(tài)下,不同體溫可分成以下三種發(fā)熱類(lèi)型:低熱:;高熱:;超高熱(有生命危險(xiǎn)):.某位患者因患肺炎發(fā)熱,于12日至26日住院治療.醫(yī)生根據(jù)病情變化,從14日開(kāi)始,以3天為一個(gè)療程,分別用三種不同的抗生素為該患者進(jìn)行消炎退熱.住院期間,患者每天上午800服藥,護(hù)士每天下午1600為患者測(cè)量腋下體溫記錄如下:

抗生素使用情況

沒(méi)有使用

使用抗生素A

使用抗生素B治療

日期

12

13

14

15

16

17

18

19

體溫(

38.7

39.4

39.7

40.1

39.9

39.2

38.9

39.0

抗生素使用情況

使用抗生素C治療

沒(méi)有使用

日期

20

21

22

23

24

25

26

體溫(

38.4

38.0

37.6

37.1

36.8

36.6

36.3

I)請(qǐng)你計(jì)算住院期間該患者體溫不低于的各天體溫平均值;

II)在19—23日期間,醫(yī)生會(huì)隨機(jī)選取3天在測(cè)量體溫的同時(shí)為該患者進(jìn)行某一特殊項(xiàng)目a項(xiàng)目的檢查,記X為高熱體溫下做a項(xiàng)目檢查的天數(shù),試求X的分布列與數(shù)學(xué)期望;

III)抗生素治療一般在服藥后2-8個(gè)小時(shí)就能出現(xiàn)血液濃度的高峰,開(kāi)始?xì)缂?xì)菌,達(dá)到消炎退熱效果.假設(shè)三種抗生素治療效果相互獨(dú)立,請(qǐng)依據(jù)表中數(shù)據(jù),判斷哪種抗生素治療效果最佳,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,Sn=an+1.

1)求數(shù)列{an}的通項(xiàng)公式;

2)若,求數(shù)列{bn}的前n項(xiàng)和為Tn.

查看答案和解析>>

同步練習(xí)冊(cè)答案