設y=f(x)是定義在R上的函數(shù),給定下列三個條件:
(1)y=f(x)是偶函數(shù);
(2)y=f(x)的圖象關于直線x=1對稱;
(3)T=2為y=f(x)的一個周期.
如果將上面(1)、(2)、(3)中的任意兩個作為條件,余下一個作為結論,那么構成的三個命題中真命題的個數(shù)有________個.
解:①先證明由(1)和(2)作為條件,可以得到(3)成立
∵y=f(x)的圖象關于直線x=1對稱,
∴f(1-x)=f(1+x)
又∵y=f(x)是偶函數(shù),可得f(1-x)=f(x-1)
∴f(x-1)=f(1+x),即f(x-1)=f[(x-1)+2],函數(shù)y=f(x)是T=2的周期函數(shù);
②再證明由(2)和(3)作為條件,可以得到(1)成立
∵y=f(x)的圖象關于直線x=1對稱,
∴f(1-x)=f(1+x)
又∵T=2為y=f(x)的一個周期,可得f(1+x)=f[(x+1)-2],
∴f(1-x)=f(x-1),可得f(1-x)=f[-(1-x)],
以x代替1-x,得f(x)=f(-x),故函數(shù)y=f(x)是偶函數(shù);
③最后證明由(1)和(3)作為條件,可以得到(1)成立
∵T=2為y=f(x)的一個周期,
∴f(1+x)=f[(x+1)-2]=f(x-1),
又∵y=f(x)是偶函數(shù),可得f(x-1)=f(1-x),
∴函數(shù)y=f(x)滿足f(1-x)=f(1+x),可得y=f(x)的圖象關于直線x=1對稱.
綜上所述,將上面(1)、(2)、(3)中的任意兩個作為條件,余下一個作為結論,可以構成的三個真命題.
故答案為:3
分析:首先由(1)、(2)作為條件,可以證出(3)成立.然后類似地可以由(2)、(3)作為條件,證出(1)成立;由(1)、(3)作為條件,證出(2)成立,可得真命題的個數(shù)為3個.
點評:本題以函數(shù)的奇偶性、周期性和圖象的對稱性為載體,考查了命題真假的判斷及其理論證明,屬于基礎題.