【題目】在等比數(shù)列{an}中,a2=3,a5=81. (Ⅰ)求an
(Ⅱ)設(shè)bn=log3an , 求數(shù)列{bn}的前n項(xiàng)和Sn

【答案】解:(Ⅰ)設(shè)等比數(shù)列{an}的公比為q, 由a2=3,a5=81,得
,解得
;
(Ⅱ)∵ ,bn=log3an

則數(shù)列{bn}的首項(xiàng)為b1=0,
由bn﹣bn1=n﹣1﹣(n﹣2)=1(n≥2),
可知數(shù)列{bn}是以1為公差的等差數(shù)列.

【解析】(Ⅰ)設(shè)出等比數(shù)列的首項(xiàng)和公比,由已知列式求解首項(xiàng)和公比,則其通項(xiàng)公式可求;(Ⅱ)把(Ⅰ)中求得的an代入bn=log3an , 得到數(shù)列{bn}的通項(xiàng)公式,由此得到數(shù)列{bn}是以0為首項(xiàng),以1為公差的等差數(shù)列,由等差數(shù)列的前n項(xiàng)和公式得答案.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等差數(shù)列的前n項(xiàng)和公式的相關(guān)知識(shí),掌握前n項(xiàng)和公式:,以及對(duì)等比數(shù)列的通項(xiàng)公式(及其變式)的理解,了解通項(xiàng)公式:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,多面體中,四邊形是菱形, , 相交于, ,點(diǎn)在平面上的射影恰好是線段的中點(diǎn).

(Ⅰ)求證: 平面;

(Ⅱ)若直線與平面所成的角為,求平面與平面所成角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知OPQ是半徑為1,圓心角為θ的扇形,A是扇形弧PQ上的動(dòng)點(diǎn),ABOQ,OPAB交于點(diǎn)B,ACOP,OQAC交于點(diǎn)C.

(1)當(dāng)θ=時(shí),求點(diǎn)A的位置,使矩形ABOC的面積最大,并求出這個(gè)最大面積;

(2)當(dāng)θ=時(shí),求點(diǎn)A的位置,使平行四邊形ABOC的面積最大,并求出這個(gè)最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(sin ,sin ), =(cos ,cos ),且向量 與向量 共線.
(1)求證:sin( )=0;
(2)若記函數(shù)f(x)=sin( ),求函數(shù)f(x)的對(duì)稱軸方程;
(3)求f(1)+f(2)+f(3)+…+f(2013)的值;
(4)如果已知角0<A<B<π,且A+B+C=π,滿足f( )=f( )= ,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國際奧委會(huì)將于2017年9月15日在秘魯利馬召開130次會(huì)議決定2024年第33屆奧運(yùn)會(huì)舉辦地。目前德國漢堡、美國波士頓等申辦城市因市民擔(dān)心賽事費(fèi)用超支而相繼退出。某機(jī)構(gòu)為調(diào)查我國公民對(duì)申辦奧運(yùn)會(huì)的態(tài)度,選了某小區(qū)的100位居民調(diào)查結(jié)果統(tǒng)計(jì)如下:

(1)根據(jù)已有數(shù)據(jù),把表格數(shù)據(jù)填寫完整;

(2)能否在犯錯(cuò)誤的概率不超過5%的前提下認(rèn)為不同年齡與支持申辦奧運(yùn)無關(guān)?

(3)已知在被調(diào)查的年齡大于50歲的支持者中有5名女性,其中2位是女教師,現(xiàn)從這5名女性中隨機(jī)抽取3人,求至多有1位教師的概率.

附: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)求上的最小值;

2)若關(guān)于的不等式只有兩個(gè)整數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)階段全國多地空氣質(zhì)量指數(shù)“爆表”.為探究車流量與濃度是否相關(guān),現(xiàn)對(duì)北方某中心城市的車流量最大的地區(qū)進(jìn)行檢測,現(xiàn)采集到月某天個(gè)不同時(shí)段車流量與濃度的數(shù)據(jù),如下表:

車流量(萬輛/小時(shí))

濃度 (微克/立方米)

(1)根據(jù)上表中的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(2)規(guī)定當(dāng)濃度平均值在,空氣質(zhì)量等級(jí)為優(yōu);當(dāng)濃度平均值在,空氣質(zhì)量等級(jí)為良;為使該城市空氣質(zhì)量為優(yōu)和良,利用該回歸方程,預(yù)測要將車流量控制在每小時(shí)多少萬輛內(nèi)(結(jié)果以萬輛做單位,保留整數(shù)).

附:回歸直線方程: ,其中, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)每噸甲產(chǎn)品要用A原料3噸,B原料2噸,生產(chǎn)每噸乙產(chǎn)品要用A原料1噸,B原料3噸。銷售每噸甲產(chǎn)品可獲得利潤5萬元,每噸乙產(chǎn)品可獲得利潤3萬元,該企業(yè)在一個(gè)生產(chǎn)周期內(nèi)消耗A原料不超過13噸,B原料不超過18噸,那么該企業(yè)可獲得最大利潤是___________萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù).

1)當(dāng)時(shí),解不等式

2)若關(guān)于的方程的解集中恰好有一個(gè)元素,求的取值范圍;

(3)設(shè),若對(duì)任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過1,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案