如圖,矩形ABCD和矩形ABEF中,矩形ABEF可沿AB任意翻折,AF=AD,M、N分別在AE、DB上運(yùn)動(dòng),當(dāng)F、A、D不共線(xiàn),M、N不與A、D重合,且AM=DN時(shí),有( 。
A、MN∥平面FAD
B、MN與平面FAD相交
C、MN⊥平面FAD
D、MN與平面FAD可能平行,也可能相交
考點(diǎn):空間中直線(xiàn)與平面之間的位置關(guān)系
專(zhuān)題:空間位置關(guān)系與距離
分析:利用直線(xiàn)和平面平行、直線(xiàn)和平面垂直的判定定理、性質(zhì)定理,結(jié)合反例、反證法的思想方法,逐一判斷得出答案.
解答: 解:由已知,在未折疊的原梯形中,MN交AB與P,折疊后,
由題意可知AF∥MP,PN∥AD.
∴平面MNP∥平面FAD,MN?平面PMN.
∴MN∥平面FDA,
∴A正確.
故選:A.
點(diǎn)評(píng):本題主要考查了空間線(xiàn)面位置關(guān)系,要求熟練掌握相應(yīng)的定義和定理,注意定理成立的條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線(xiàn)
x2
4
-
y2
5
=1的漸近線(xiàn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
ex+m
ex+1
,若?a,b,c∈R,f(a),f(b),f(c)為某一個(gè)三角形的邊長(zhǎng),則實(shí)數(shù)m的取值范圍是(  )
A、[
1
2
,1]
B、[0,1]
C、[1,2]
D、[
1
2
,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若cosA=
1
3
,sinC=3sinB,且S△ABC=
2
,則b=( 。
A、1
B、2
3
C、3
2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
m
=(1,2),
n
=(2,1),則(
m
n
)(
m
-2
n
)等于( 。
A、(-12,0)B、4
C、(-3,0)D、-12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα+cosα=
1
3
,則sin2
π
4
-α)=( 。
A、
1
18
B、
17
18
C、
8
9
D、
2
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理科)已知如圖,四面體ABCD中,P,Q,R分別在棱BC,CD,DA上,且BP=2PC,CQ=2QD,DR=RA,則A,B兩點(diǎn)到平面PQR的距離之比為(  )
A、1:4B、1:3
C、1:2D、1:1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x+
1
x
,(x>0),以點(diǎn)(n,f(n))為切點(diǎn)作函數(shù)圖象的切線(xiàn)ln(n≥1,n∈Z),直線(xiàn)x=n+1與函數(shù)y=f(x)圖象及切線(xiàn)ln分別相交于An,Bn,記an=|AnBn|.
(Ⅰ)求切線(xiàn)ln的方程及數(shù)列{an}的通項(xiàng);
(Ⅱ)設(shè)數(shù)列{nan}的前n項(xiàng)和為Sn,求證:Sn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)O重合,極軸與直角坐標(biāo)系的非負(fù)半軸重合,直線(xiàn)l的參數(shù)方程為
x=t
y=2+2t
(參數(shù)t∈R),曲線(xiàn)C的極坐標(biāo)方程為ρcos2θ=2sinθ.
(Ⅰ)求直線(xiàn)l的普通方程與曲線(xiàn)C的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線(xiàn)l與曲線(xiàn)C相交于A、B兩點(diǎn),求證:
OA
OB
=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案