求經(jīng)過直線l1:x+y-5=0,l2:x-y-3=0的交點且平行于直線2x+y-3=0的直線方程.
考點:兩條直線的交點坐標,直線的一般式方程與直線的平行關(guān)系
專題:直線與圓
分析:聯(lián)立兩直線方程求得兩直線交點坐標,由直線方程的點斜式得答案.
解答: 解:聯(lián)立
x+y-5=0
x-y-3=0
,解得
x=4
y=1

∴交點為(4,1),
故所求直線為y-1=-2(x-4),
即2x+y-9=0.
點評:本題考查了兩直線的交點坐標,考查了直線的點斜式方程,是基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

某幾何體的三視圖如圖所示,則它的體積是( 。
A、
2
3
π
B、8-
1
3
π
C、8-2π
D、8-
2
3
π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)F1,F(xiàn)2分別是橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點,過點F1的直線交橢圓E于A,B兩點,
|AF1|=3|BF1|,且|AB|=4,△ABF2的周長為16
(1)求|AF2|;
(2)若直線AB的斜率為1,求橢圓E的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三角形ABC的頂點坐標為A(-1,5),B(-2,-1),C(4,7),求BC邊上中線AM的長和AM所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某大學外語系有5名大學生參加南京青奧會翻譯志愿者服務(wù),每名大學生都隨機分配到奧體中心體操和游泳兩個比賽項目(每名大學生只參加一個項目的服務(wù)).
(1)求5名大學生中恰有2名被分配到體操項目的概率;
(2)設(shè)X,Y分別表示5名大學生分配到體操、游泳項目的人數(shù),記ξ=|X-Y|,求隨機變量ξ的分布列和數(shù)學期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)在一個周期內(nèi)的部分函數(shù)圖象如圖所示.
(I)求函數(shù)f(x)的解析式;
(Ⅱ)求函數(shù)f(x)在區(qū)間[0,1]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知甲、乙兩個工廠在今年的1月份的利潤都是6萬,且乙廠在2月份的利潤是8萬元.若甲、乙兩個工廠的利潤(萬元)與月份x之間的函數(shù)關(guān)系式分別符合下列函數(shù)模型:f(x)=a1x2-4x+6,g(x)=a2•3x+b2(a1,a2,b2∈R).
(1)求函數(shù)f(x)與g(x)的解析式;
(2)求甲、乙兩個工廠今年5月份的利潤;
(3)在同一直角坐標系下畫出函數(shù)f(x)與g(x)的草圖,并根據(jù)草圖比較今年1-10月份甲、乙兩個工廠的利潤的大小情況.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在教育心理學中有時可用函數(shù)f(x)=
0.1+1.5ln
a
a-x
,(x≥6)
x-4.4
x-4
,(x>6)
描述學習某學科知識的掌握程度,其中x表示某學科知識的學習次數(shù)(x∈N*),正實數(shù)a與學科知識有關(guān).
(1)當x≥7時,判斷f(x)的單調(diào)性,并加以證明;
(2)根據(jù)經(jīng)驗,學科甲、乙、丙對應(yīng)的a的取值區(qū)間分別為(115,121],(121,127],(127,133].當學習某學科知識5次時,掌握程度是70%,請確定相應(yīng)的學科.(參考數(shù)據(jù):e0.04=1.04,e0.4=1.49)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

橢圓
x2
a2
+
y2
b2
=1(a>b>0)的焦點為F1、F2,離心率為
2
2
,通徑長(過焦點且垂直于長軸的直線與橢圓相交線段的長)為2
2

(Ⅰ)求橢圓的方程;
(Ⅱ)若直線l與橢圓相交于M(x1,y1)、N(x2,y2)兩點,△OMN面積為2
2
,試問x12+x22能否為定值?如果為定值,求出該值;否則,請說明理由.

查看答案和解析>>

同步練習冊答案