精英家教網 > 高中數學 > 題目詳情

【題目】某次知識競賽規(guī)則如下:在主辦方預設的5個問題中,選手若能連續(xù)正確回答出兩個問題,即停止答題,晉級下一輪。假設某選手正確回答每個問題的概率都是0.8,且每個問題的回答結果相互獨立,則該選手恰好回答了4個問題就晉級下一輪的概率等于( )。

【答案】

【解析】

試題根據題意,記該選手恰好回答了4個問題就晉級下一輪為A

若該選手恰好回答了4個問題就晉級下一輪,

必有第二個問題回答錯誤,第三、四個回答正確,第一個問題可對可錯;

有相互獨立事件的概率乘法公式,

可得PA=1×0.2×0.8×0.8=0.128

故答案為0.128.

法二:根據題意,記該選手恰好回答了4個問題就晉級下一輪為A

若該選手恰好回答了4個問題就晉級下一輪,

必有第二個問題回答錯誤,第三、四個回答正確,第一個問題可對可錯,由此分兩類,第一個答錯與第一個答對;

有相互獨立事件的概率乘法公式,

可得PA=0.8×0.2×0.8×0.8+0.2×0.2×0.8×0.8=0.2×0.8×0.8=0.128

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】近年來,隨著互聯(lián)網的發(fā)展,諸如滴滴打車”“神州專車等網約車服務在我國各:城市迅猛發(fā)展,為人們出行提供了便利,但也給城市交通管理帶來了一些困難.為掌握網約車在省的發(fā)展情況,省某調查機構從該省抽取了個城市,分別收集和分析了網約車的兩項指標數,數據如下表所示:

城市1

城市2

城市3

城市4

城市5

指標數

指標數

經計算得:

1)試求間的相關系數,并利用說明是否具有較強的線性相關關系(,則線性相關程度很高,可用線性回歸模型擬合);

2)立關于的回歸方程,并預測當指標數為時,指標數的估計值.

附:相關公式:,

參考數據:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】有甲、乙兩個班級進行數學考試,按照大于或等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績后,得到如下的2×2列聯(lián)表.已知從全部210人中隨機抽取1人為優(yōu)秀的概率為.

(1)請完成上面的2×2列聯(lián)表,并判斷若按99%的可靠性要求,能否認為“成績與班級有關”;

(2)從全部210人中有放回地抽取3次,每次抽取1人,記被抽取的3人中的優(yōu)秀人數為ξ,若每次抽取的結果是相互獨立的,求ξ的分布列及數學期望E(ξ).

P(K2k0)

0.05

0.01

k0

3.841

6.635

附:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某省積極響應教育部號召實行新課程改革,為了調查某校高三學生的物理考試成績是否達到級與學生性別是否有關,從該校高三學生中隨機抽取了部分男女生的成績得到如下列聯(lián)表:

考試成績達到

考試成績未達到

總計

男生

26

40

女生

6

總計

70

1)(ⅰ)將列聯(lián)表補充完整;

(ⅱ)據此列聯(lián)表判斷,能否有的把握認為物理考試成績是否達到級與性別有關

2)將頻率視作概率,從該校高三年級任意抽取3名學生的成績,求物理考試成績達到級的人數的分布列及期望.

附:

0.050

0.010

0.001

3.841

6.635

10..828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校從學生會宣傳部6名成員(其中男生4人,女生2)中,任選3人參加某省舉辦的我看中國改革開放三十年演講比賽活動.

(1)設所選3人中女生人數為ξ,求ξ的分布列;

(2)求男生甲或女生乙被選中的概率;

(3)男生甲被選中為事件A,女生乙被選中為事件B,求P(B)P(B|A)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知直線的參數方程為為參數),以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為

1)求直線的普通方程和曲線的直角坐標方程;

2)設點,直線與曲線的交點為、,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】經過點P(3,2),且在兩坐標軸上的截距相等的直線方程為(寫出一般式)___

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某學校開設了射擊選修課,規(guī)定向、兩個靶進行射擊:先向靶射擊一次,命中得1分,沒有命中得0分,向靶連續(xù)射擊兩次,每命中一次得2分,沒命中得0分;小明同學經訓練可知:向靶射擊,命中的概率為,向靶射擊,命中的概率為,假設小明同學每次射擊的結果相互獨立.現(xiàn)對小明同學進行以上三次射擊的考核.

1)求小明同學恰好命中一次的概率;

2)求小明同學獲得總分的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設集合,是非空集合的兩個不同子集.

1)若,且的子集,求所有有序集合對的個數;

2)若,且的子集,求所有有序集合對的個數.

查看答案和解析>>

同步練習冊答案