【題目】四棱錐中,已知平面PAD,E為棱PC上的一點,經(jīng)過A,B,E三點的平面與棱PD相交于點F

求證:平面PAD;

求證:;

若平面平面PCD,求證:

【答案】(1)見解析;(2)見解析;(3)見解析

【解析】

推導出,,從而平面ABCD,進而,由,能證明平面PAD平面PAD平面PAD,得,從而平面ABEF,由此能證明,,,得到平面ABE,由此能證明

平面PAD,平面PAD,

,又,

平面ABCD,

平面ABCD,

,,平面PAD

平面PAD

平面PAD,,

平面ABEF,平面ABEF

平面ABEF,

平面PCD,平面平面

,

平面PAD,,

,

平面平面PCD,平面平面,

平面PCD,

平面ABE,

平面ABE

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某公司欲生產(chǎn)一款迎春工藝品回饋消費者,工藝品的平面設計如圖所示,該工藝品由直角和以為直徑的半圓拼接而成,點為半圈上一點(異于,),點在線段上,且滿足.已知,設.

1)為了使工藝禮品達到最佳觀賞效果,需滿足,且達到最大.為何值時,工藝禮品達到最佳觀賞效果;

2)為了工藝禮品達到最佳穩(wěn)定性便于收藏,需滿足,且達到最大.為何值時,取得最大值,并求該最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018河南豫南九校高三下學期第一次聯(lián)考設函數(shù)

I)當時, 恒成立,求的范圍;

II)若處的切線為,且方程恰有兩解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知不等式的解集為.

1)求;(2)解關于的不等式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,其中, ,如果函數(shù)與函數(shù)都有零點且它們的零點完全相同,則________________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,其中為函數(shù)的導數(shù)若對于,,則稱函數(shù)D上的凸函數(shù).

求證:函數(shù)是定義域上的凸函數(shù);

已知函數(shù)上的凸函數(shù).

求實數(shù)a的取值范圍;

求函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市環(huán)保部門為了讓全市居民認識到冬天燒煤取暖對空氣數(shù)值的影響,進而喚醒全市人民的環(huán)保節(jié)能意識。對該市取暖季燒煤天數(shù)與空氣數(shù)值不合格的天數(shù)進行統(tǒng)計分析,得出下表數(shù)據(jù):

(天)

9

8

7

5

4

(天)

7

6

5

3

2

(1)以統(tǒng)計數(shù)據(jù)為依據(jù),求出關于的線性回歸方程;

2)根據(jù)(1)求出的線性回歸方程,預測該市燒煤取暖的天數(shù)為20時空氣數(shù)值不合格的天數(shù).

參考公式:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知復數(shù)滿足的虛部為,且在復平面內(nèi)對應的點在第二象限.

(1)求復數(shù);

(2)若復數(shù)滿足,求在復平面內(nèi)對應的點的集合構(gòu)成圖形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為等腰梯形, , 分別為線段, 的中點.

(1)證明: 平面;

(2)若平面 ,求四面體的體積.

查看答案和解析>>

同步練習冊答案