11.已知函數(shù)f(x)=$\frac{{{2^x}-a}}{{{2^x}+1}}$,(a>0).
(1)當(dāng)a=2時(shí),證明函數(shù)f(x)不是奇函數(shù);
(2)判斷函數(shù)f(x)的單調(diào)性,并利用函數(shù)單調(diào)性的定義給出證明;
(3)若f(x)是奇函數(shù),且f(x)-x2+4x≥m在x∈[-2,2]時(shí)恒成立,求實(shí)數(shù)m的取值范圍.

分析 (1)當(dāng)a=2時(shí),f(x)=$\frac{{2}^{x}-2}{{2}^{x}+1}$,根據(jù)f(-1)≠-f(1),可得函數(shù)f(x)不是奇函數(shù);
(2)函數(shù)f(x)在R上為單調(diào)增函數(shù),取x1<x2,利用作差法,判斷出f(x1)<f(x2),再由函數(shù)單調(diào)性的定義,可得結(jié)論;
(3)若f(x)是奇函數(shù),可得a=1.令g(x)=f(x)-x2+4x,判斷函數(shù)的單調(diào)性,進(jìn)而求出函數(shù)的最小值,進(jìn)而可得實(shí)數(shù)m的取值范圍.

解答 證明:(1)當(dāng)a=2時(shí),f(x)=$\frac{{2}^{x}-2}{{2}^{x}+1}$,因?yàn)閒(1)=0,f(-1)=-1,
所以f(-1)≠-f(1),
故f(x)不是奇函數(shù);  …4分
解:(2)函數(shù)f(x)在R上為單調(diào)增函數(shù),…6分
證明:設(shè)x1<x2,則f(x1)-f(x2)=$\frac{{2}^{{x}_{1}}-a}{{2}^{{x}_{1}}+1}$-$\frac{{2}^{{x}_{2}}-a}{{2}^{{x}_{2}}+1}$=$\frac{{(2}^{{x}_{1}}-{2}^{{x}_{2}})(1+a)}{{(2}^{{x}_{1}}+1){(2}^{{x}_{2}}+1)}$…8分
∵x1<x2,∴${2}^{{x}_{1}}-{2}^{{x}_{2}}$<0,且${2}^{{x}_{1}}+1>0$,${2}^{{x}_{2}}+1>0$,
又∵a>0,
∴1+a>0,
∴f(x1)-f(x2)<0,故f(x1)<f(x2),
∴函數(shù)f(x)在R上為單調(diào)增函數(shù)…10分
(3)因?yàn)閒(x)是奇函數(shù),所以f(-x)=-f(x)對(duì)任意x∈R恒成立.
即$\frac{{2}^{-x}-a}{{2}^{-x}+1}$+$\frac{{2}^{x}-a}{{2}^{x}+1}$=0對(duì)任意x∈R恒成立.
化簡(jiǎn)整理得$(a-1)({2}^{{x}_{\;}}+1)=0$對(duì)任意x∈R恒成立.
∴a=1…12分
因?yàn)閒(x)-x2+4x≥m在x∈[-2,2]時(shí)恒成立,
令g(x)=f(x)-x2+4x,設(shè)x1,x2∈[-2,2],且x1<x2,
則g(x1)-g(x2)=[f(x1)-f(x2)]+(x1-x2)(4-x1-x2),
由(2)可知,f(x1)-f(x2)<0,又(x1-x2)(4-x1-x2)<0,
所以g(x1)-g(x2)<0,即g(x1)<g(x2),
故函數(shù)g(x)=f(x)-x2+4x在x∈[-2,2]上是增函數(shù)…14分(直接判斷出單調(diào)性也給分)
所以當(dāng)x=-2時(shí),函數(shù)g(x)取最小值-$\frac{63}{5}$,
故m≤-$\frac{63}{5}$,
因此m的取值范圍是(-∞,-$\frac{63}{5}$]…16分.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)的單調(diào)性,函數(shù)的奇偶性,函數(shù)恒成立問題,函數(shù)的最值,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在三棱錐P-ABC中,AB=AC=2PA=2,∠PAB=∠PAC=∠BAC=$\frac{π}{3}$.
(Ⅰ) 證明:AP⊥BC;
(Ⅱ)求三棱錐P-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)命題p:實(shí)數(shù)x滿足:x2-4ax+3a2<0,其中a>0,命題q:實(shí)數(shù)x滿足x=($\frac{1}{2}$)m-1,其中m∈(1,2).
(1)若a=$\frac{1}{4}$,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)¬p是¬q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)a=0.32,b=20.5,c=log24,則實(shí)數(shù)a,b,c的大小關(guān)系是a<b<c.(按從小到大的順序用不等號(hào)連接)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=|x|-x+1,則不等式f(1-x2)>f(1-2x)的解集為{x|x>2或x<-1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知A={a,b,c},B={a,b},則下列關(guān)系不正確的是( 。
A.A∩B=BB.AB⊆BC.A∪B⊆AD.B?A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=xln(x+$\sqrt{2a+{x}^{2}}$(a>0)為偶函數(shù).
(1)求a的值;
(2)求g(x)=ax2+2x+1在區(qū)間[-6,3]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若點(diǎn)(sin$\frac{2π}{3}$,cos$\frac{2π}{3}}$)在角α的終邊上,則sinα的值為( 。
A.$-\frac{1}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a2=3,S5=25.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)設(shè)數(shù)列{$\frac{1}{{{a_n}{a_{n+1}}}}$}的前n項(xiàng)和為Tn,是否存在k∈N*,使得等式2-2Tk=$\frac{1}{3^k}$成立,若存在,求出k的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案