1.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a2=3,S5=25.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)設(shè)數(shù)列{$\frac{1}{{{a_n}{a_{n+1}}}}$}的前n項(xiàng)和為Tn,是否存在k∈N*,使得等式2-2Tk=$\frac{1}{3^k}$成立,若存在,求出k的值;若不存在,說(shuō)明理由.

分析 (1)由題意可得首項(xiàng)和公差的方程組,解方程組代入通項(xiàng)公式公式計(jì)算可得.
(2)利用“裂項(xiàng)求和”與數(shù)列的單調(diào)性即可得出.

解答 解:(1)設(shè)等差數(shù)列的公差為d,
則由題意可得$\left\{\begin{array}{l}{{a}_{1}+d=3}\\{5{a}_{1}+\frac{5×4}{2}d=25}\end{array}\right.$,
解得$\left\{\begin{array}{l}{{a}_{1}=2}\\{d=2}\end{array}\right.$,
所以an=1+2(n-1)=2n-1;
(2)由(1)得$\frac{1}{{{a_n}{a_{n+1}}}}=\frac{1}{(2n-1)(2n+1)}=\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$,
所以數(shù)列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前n項(xiàng)和${T_n}=\frac{1}{2}(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+…+\frac{1}{2n-1}-\frac{1}{2n+1})$=$\frac{1}{2}(1-\frac{1}{2n+1})=\frac{n}{2n+1}$.…(8分)
因?yàn)?2-2{T_k}=2-\frac{2k}{2k+1}=1+\frac{1}{2k+1}$,而$\left\{{\frac{1}{2k+1}}\right\}$單調(diào)遞減,
所以$1<2-2{T_k}=1+\frac{1}{2k+1}≤\frac{4}{3}$,…(10分)
又$\frac{1}{3^k}∈({0,\frac{1}{3}}]$,
所以不存在k∈N*,使得等式$2-2{T_k}=\frac{1}{3^k}$成立.

點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、“裂項(xiàng)求和”與數(shù)列的單調(diào)性,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{{{2^x}-a}}{{{2^x}+1}}$,(a>0).
(1)當(dāng)a=2時(shí),證明函數(shù)f(x)不是奇函數(shù);
(2)判斷函數(shù)f(x)的單調(diào)性,并利用函數(shù)單調(diào)性的定義給出證明;
(3)若f(x)是奇函數(shù),且f(x)-x2+4x≥m在x∈[-2,2]時(shí)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)集合M={-1,0,1,2},N={x|1g(x+1)>0},則M∩N=( 。
A.{0,1}B.{0,1,2}C.{1,2}D.{-1,0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且(2a-c)cosB=bcosC,$\overrightarrow{AB}$•$\overrightarrow{BC}$=-3.
(I)求△ABC的面積;
(II)若sinA:sinC=3:2,求AC邊上的中線BD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè){an}是正數(shù)組成的等比數(shù)列,公比q=2,且a1a2a3…a33=233,則a3a6a9…a33=(  )
A.211B.215C.220D.222

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.不等式x2≥4的解集為( 。
A.{x|-2≤x≤2}B.{x|x≤-2或x≥2}C.{x|-2<x<2}D.{x|x<-2或x>2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知方程x2+ax+b=0的一根在(0,1)上,另一根在(1,2)上,則$\frac{2-b}{3-a}$的取值范圍是(  )
A.(2,+∞)B.$(-∞,\frac{1}{2})$C.$(\frac{1}{2},2)$D.$(0,\frac{1}{2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若x,y滿足$\left\{\begin{array}{l}{x-y+3≥0}\\{x+y+1≥0}\\{x≤k}\end{array}\right.$,且z=2x+y的最大值為6,則k的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知p:方程x2+mx+1=0有兩個(gè)不等的負(fù)根;q:方程4x2+4(m-2)x+1=0無(wú)實(shí)根,若“p或q”真“p且q”為假,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案