【題目】已知橢圓E: =1(a>b>0)的離心率e= ,并且經(jīng)過(guò)定點(diǎn)P( , ). (Ⅰ)求橢圓E的方程;
(Ⅱ)問(wèn)是否存在直線(xiàn)y=﹣x+m,使直線(xiàn)與橢圓交于A、B兩點(diǎn),滿(mǎn)足OA⊥OB,若存在求m值,若不存在說(shuō)明理由.

【答案】解:(Ⅰ)由題意:e= = ,且 , 解得:a=2,b=1,∴橢圓E的方程為
(Ⅱ)設(shè)A(x1 , y1),B(x2 , y2
由題意得 (*)
所以 =


又方程(*)要有兩個(gè)不等實(shí)根,
m的值符合上面條件,所以
【解析】(Ⅰ)利用橢圓E: =1(a>b>0)的離心率e= ,并且經(jīng)過(guò)定點(diǎn)P( , ),建立方程,求出a,b,即可求橢圓E的方程;(Ⅱ)直線(xiàn)y=﹣x+m代入橢圓方程,利用韋達(dá)定理,結(jié)合 ,即可求m值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: (a>b>0)的離心率為 ,左、右焦點(diǎn)分別為F1 , F2 , 點(diǎn)G在橢圓C上,且 =0,△GF1F2的面積為2.

(1)求橢圓C的方程;
(2)直線(xiàn)l:y=k(x﹣1)(k<0)與橢圓Γ相交于A,B兩點(diǎn).點(diǎn)P(3,0),記直線(xiàn)PA,PB的斜率分別為k1 , k2 , 當(dāng) 最大時(shí),求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知全集U=R,函數(shù) 的定義域?yàn)榧螦,函數(shù)y=log2(x+2)的定義域?yàn)榧螧,則集合(CUA)∩B=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x3+x,對(duì)任意的m∈[﹣2,2],f(mx﹣2)+f(x)<0恒成立,則x的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax2﹣(a+2)x+lnx. (Ⅰ)當(dāng)a=1時(shí),求曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)方程;
(Ⅱ)當(dāng)a>0時(shí),若f(x)在區(qū)間[1,e]上的最小值為﹣2,求a的取值范圍;
(Ⅲ)若對(duì)任意x1 , x2∈(0,+∞),當(dāng)x1≠x2時(shí)有 >0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)= 是定義在(﹣1,1)上的奇函數(shù),且f( )=
(1)確定函數(shù)f(x)的解析式;
(2)用定義證明f(x)在(﹣1,1)上是增函數(shù);
(3)解不等式f(t﹣1)+f(t)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)
(1)求證f(x)是R上的單調(diào)增函數(shù);
(2)求函數(shù)f(x)的值域;
(3)若對(duì)任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)>0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)= +lnx,則(
A.x=2為f(x)的極大值點(diǎn)??
B.x=2為f(x)的極小值點(diǎn)
C.x= 為f(x)的極大值點(diǎn)??
D.x= 為f(x)的極小值點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=lnx+ax2+x(a∈R).
(1)若函數(shù)f(x)在x=1處的切線(xiàn)平行于x軸,求實(shí)數(shù)a的值,并求此時(shí)函數(shù)f(x)的極值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案