如圖,D、E、F分別是邊AB、BC、CA上的中點,則
DE
+
DA
-
BE
=( 。
A、
0
B、
BC
C、
BE
D、
AF
考點:向量的加法及其幾何意義,向量的減法及其幾何意義
專題:平面向量及應用
分析:由向量加減法的平行四邊形法則和三角形法則直接求解即可.
解答: 解:∵D、E、F分別是邊AB、BC、CA上的中點,
故四邊形ADEF為平行四邊形,
且EF=BE,
DE
+
DA
-
BE

=
DF
-
BE

=
DF
-
DF

=
0
,
故選:A
點評:本題考查向量的加法和減法運算,屬基本運算的考查.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

i是虛數(shù)單位,復數(shù)
1-3i
1-i
的虛部是(  )
A、-1B、-iC、-2D、-2i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式
x-2
1-x
>0的解集是( 。
A、{x|x>2或x<1}
B、{x|1<x<2}
C、{x|-1<x<2}
D、{x|x>2或x<-1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設拋物線C:y2=3px(p≥0)的焦點為F,點M在C上,|MF|=5,若以MF為直徑的圓過點(0,3),則C的方程為( 。
A、y2=4x或y2=8x
B、y2=2x或y2=8x
C、y2=4x或y2=16x
D、y2=2x或y2=16x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x與y之間的一組數(shù)據(jù)為
x 1 2 3 4
y 1 5-a 3 7+a
則y與x的回歸直線方程
y
=
b
x+
a
必過定點(  )
A、(4,
3
2
B、(
5
2
,4)
C、(6,8)
D、(
5
2
,4+a)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將函數(shù)f(x)=2tan(
x
3
+
π
6
)的圖象向左平移
π
4
個單位,再向下平移1個單位,得到函數(shù)g(x)的圖象,則g(x)的解析式為( 。
A、g(x)=2tan(
x
3
-
π
4
)+1
B、g(x)=2tan(
x
3
+
π
4
)-1
C、g(x)=2tan(
x
3
-
π
12
)+1
D、g(x)=2tan(
x
3
-
π
12
)-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若曲線f(x)=sinx+1在x=π處的切線與直線ax+2y+1=0相互垂直,則實數(shù)a等于( 。
A、2B、1C、-1D、-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x+
a
x
+b,不等式xf(x)<0的解集為(1,3).
(Ⅰ)求實數(shù)a、b的值;
(Ⅱ)若關于x的方程f(2x)-k•2-x-k=0有兩個不相等的實數(shù)根,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知條件p:x2+12x+20≤0,條件q:1-m<x<1+m(m>0).
(1)求條件p中x的取值范圍;
(2)若¬p是q的必要不充分條件,求m的取值范圍.

查看答案和解析>>

同步練習冊答案