【題目】已知中國某手機品牌公司生產(chǎn)某款手機的年固定成本為40萬元,每生產(chǎn)1萬部還需另投入16萬元.設(shè)公司一年內(nèi)共生產(chǎn)該款手機萬部并全部銷量完,每萬部的銷售收入為萬元,且

1)寫出年利潤萬元關(guān)于年產(chǎn)量(萬部)的函數(shù)解析式;

2)當(dāng)年產(chǎn)量為多少萬部時,公司在該款手機的生產(chǎn)中所獲得的利潤最大?并求出最大利潤.

【答案】12)當(dāng)年產(chǎn)量為萬部時,取得最大值6104萬元.

【解析】

試題分析:1)利用利潤等于收入減去成本,可得分段函數(shù)解析式;

2)分段求出函數(shù)的最大值,比較可得結(jié)論.

試題解析:1)當(dāng)時,,

當(dāng)時,,

所以

2當(dāng)時,,

所以;

當(dāng)時,,

由于

當(dāng)且僅當(dāng),即時,等號成立,

所以取最大值為5760

綜合①②知,當(dāng)時,取得最大值6104萬元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若四面體的三組對棱分別相等,即

給出下列結(jié)論:

四面體每個面的面積相等;

從四面體每個頂點出發(fā)的三條棱兩兩夾角之和大于 而小于 ;

連結(jié)四面體每組對棱中點的線段相互垂直平分;

從四面體每個頂點出發(fā)的三條棱的長可作為一個三角形的三邊長;

其中正確結(jié)論的序號是__________(寫出所有正確結(jié)論的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高二奧賽班N名學(xué)生的物理測評成績(滿分120分)分布直方圖如下,已知分?jǐn)?shù)在100~110的學(xué)生數(shù)有21人。

(Ⅰ)求總?cè)藬?shù)N和分?jǐn)?shù)在110~115分的人數(shù)n;

(Ⅱ)現(xiàn)準(zhǔn)備從分?jǐn)?shù)在110~115分的n名學(xué)生(女生占)中任選2人,求其中恰好含有一名女生的概率;

(Ⅲ)為了分析某個學(xué)生的學(xué)習(xí)狀態(tài),對其下一階段的學(xué)習(xí)提供指導(dǎo)性建議,對他前7次考試的數(shù)學(xué)成績x(滿分150分),物理成績y進行分析,下面是該生7次考試的成績。

數(shù)學(xué)

88

83

117

92

108

100

112

物理

94

91

108

96

104

101

106

已知該生的物理成績y與數(shù)學(xué)成績x是線性相關(guān)的,若該生的數(shù)學(xué)成績達到130分,請你估計他的物理成績大約是多少?

附:對于一組數(shù)據(jù)其回歸線的斜率和截距的最小二乘估計分別為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角△ABC中,三個內(nèi)角A,B,C所對的邊分別為a,b,c,且acsin C=(a2c2b2)·sin B

(1)若C,求A的大小;

(2)若ab,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形ABC的邊長為4,M,N分別為AB,AC的中點,沿MN將△AMN折起,使點A到A′的位置.若平面A′MN與平面MNCB垂直,則四棱錐A′MNCB的體積為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,在直角梯形,,,的中點,的交點.將沿折起到△的位置,如圖2所示.

1證明:平面

2若平面平面,求平面與平面所成銳二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:以點()為圓心的圓與軸交

于點O, A,與y軸交于點O, B,其中O為原點.

(1)求證:△OAB的面積為定值;

(2)設(shè)直線與圓C交于點M, N,若OM = ON,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個水輪的半徑為4m,水輪圓心O距離水面2m,已知水輪每分鐘轉(zhuǎn)動5圈,如果當(dāng)水輪上點P從水中浮現(xiàn)時(圖中點p0)開始計算時間.

(1)將點p距離水面的高度z(m)表示為時間t(s)的函數(shù);

(2)點p第一次到達最高點大約需要多少時間?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,求在區(qū)間上的最大值和最小值;

(2)若在區(qū)間上,函數(shù)的圖像恒在直線下方,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案