在△ABC中,角A,B,C所對的邊分別為5,7,8,則∠B的大小是( 。
A、
π
6
B、
π
4
C、
π
3
D、
3
考點:余弦定理
專題:解三角形
分析:在△ABC中,由條件利用余弦定理可得cos∠B=
1
2
,可得∠B的大。
解答: 解:在△ABC中,角A,B,C所對的邊分別為5,7,8,
則由余弦定理可得cos∠B=
a2+c2-b2
2ac
=
25+64-49
80
=
1
2

∴∠B的大小是
π
3
,
故選:C.
點評:本題主要考查余弦定理的應用,根據(jù)三角函數(shù)的值求角,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

命題p:“向量
a
與向量
b
的夾角θ為銳角”是命題q:“
a
b
>0”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復數(shù)
1-2i
3+4i
在復平面上對應的點位于( 。
A、第四象限B、第三象限
C、第二象限D、第一象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC的內角A、B、C的對邊分別為a、b、c,若a=2,b=2
3
,A=30°,則B等于( 。
A、60°
B、60°或l20°
C、30°
D、30°或l50°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)是R上的偶函數(shù),?x∈R恒有f(x+4)=f(x)-f(2),且當x∈(-2,0]時,f(x)=(
1
2
x-1,若g(x)=f(x)-loga(x+2)(a>1)在區(qū)間(-2,6]上恰有3個零點,則a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足條件f(x+
3
2
)=-f(x),且函數(shù)y=f(x-
3
4
)為奇函數(shù),給出以下四個命題:
①函數(shù)f(x)的最小正周期是
3
2
;
②函數(shù)f(x)的圖象關于點(-
3
4
,0)對稱;
③函數(shù)f(x)為R上的偶函數(shù);
④函數(shù)f(x)為R上的單調函數(shù).
其中真命題的個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設3a=2,3b=6,3c=18,則a、b、c是( 。
A、等差數(shù)列
B、每項倒數(shù)成等差數(shù)列
C、每項的平方成等差數(shù)列
D、每項立方成等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點為F,左右頂點分別為A,B,離心率為
1
2
,且橢圓經(jīng)過定點(
3
,
3
2
),
(Ⅰ)求橢圓C的方程;
(Ⅱ)點M(x0,y0)(x0≠1,y0>0)是圓O:x2+y2=a2上的任意一點,連結AM,交橢圓C于P,記直線MF,PB的斜率分別為k1,k2
①當k2=-
3
4
時,求k1的值;
②求
k1
k2
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD的底面ABCD為矩形,且PA=AD=1,AB=2,∠PAB=120°,∠PBC=90°.
(Ⅰ)求證:平面PAD⊥平面PAB;
(Ⅱ)求四棱錐P-ABCD的體積;
(Ⅲ)求直線PC與平面ABCD所成角的正弦值.

查看答案和解析>>

同步練習冊答案