【題目】2)(本小題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程

在直接坐標(biāo)系中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為.

I)已知在極坐標(biāo)(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為(4),判斷點(diǎn)P與直線l的位置關(guān)系;

II)設(shè)點(diǎn)Q是曲線C上的一個動點(diǎn),求它到直線l的距離的最小值.

【答案】

【解析】

試題分析:(1)消去曲線參數(shù)方程中的參數(shù),得到曲線普通方程,根據(jù)公式,把點(diǎn)的坐標(biāo)化為直角坐標(biāo)方程,即可判斷點(diǎn)與直線的關(guān)系;(2)設(shè),由點(diǎn)到直線的距離公式可得距離的表達(dá)式,通過三角恒等變換化為正弦型函數(shù)在給定區(qū)間上的最值來求解.

試題解析:(1曲線C的參數(shù)方程為

曲線C的普通方程是,

點(diǎn)P的極坐標(biāo)為,

點(diǎn)P的普通坐標(biāo)為(4cos,4sin),即(04),

把(04)代入直線lx﹣y+4=0,

0﹣4+4=0,成立,

故點(diǎn)P在直線l上.

2∵Q在曲線C上,(0°≤α360°

到直線lx﹣y+4=0的距離:

=,(0°≤α360°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖是某省從121日至224日的新冠肺炎每日新增確診病例變化曲線圖.


若該省從121日至224日的新冠肺炎每日新增確診人數(shù)按日期順序排列構(gòu)成數(shù)列,的前n項(xiàng)和為,則下列說法中正確的是(

A.數(shù)列是遞增數(shù)列B.數(shù)列是遞增數(shù)列

C.數(shù)列的最大項(xiàng)是D.數(shù)列的最大項(xiàng)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左、右焦點(diǎn)分別為,橢圓的長軸長與焦距之比為,過且斜率不為的直線交于兩點(diǎn).

(1)當(dāng)的斜率為時,求的面積;

(2)若在軸上存在一點(diǎn),使是以為頂點(diǎn)的等腰三角形,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了得到函數(shù)的圖象,只需把函數(shù),的圖象上所有的點(diǎn)(

A.向左平移個單位長度,再把所得各點(diǎn)的橫坐標(biāo)伸長到原來的倍(縱坐標(biāo)不變)

B.向右平移個單位長度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的倍(縱坐標(biāo)不變)

C.向左平移個單位長度,再把所得各點(diǎn)的橫坐標(biāo)伸長到原來的倍(縱坐標(biāo)不變)

D.向右平移個單位長度,再把所得各點(diǎn)的橫坐標(biāo)伸長到原來的倍(縱坐標(biāo)不變)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某品牌經(jīng)銷商在一廣場隨機(jī)采訪男性和女性用戶各50名,其中每天玩微信超過6小時的用戶列為“微信控”,否則稱其為“非微信控”,調(diào)查結(jié)果如下:

微信控

非微信控

合計(jì)

男性

26

24

50

女性

30

20

50

合計(jì)

56

44

100

(1)根據(jù)以上數(shù)據(jù),能否有95%的把握認(rèn)為“微信控”與“性別”有關(guān)?

(2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人,求所抽取的5人中“微信控”和“非微信控”的人數(shù);

(3)從(2)中抽取的5位女性中,再隨機(jī)抽取3人贈送禮品,試求抽取3人中恰有2人位“微信控”的概率.

參考公式: ,其中.

參考數(shù)據(jù):

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.455

0.708

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱中,側(cè)面是菱形,.

(I)證明:;

(II)若,求直線與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓 的左、右焦點(diǎn)分別為,,短軸的兩端點(diǎn)分別為,線段,的中點(diǎn)分別為,,且四邊形是面積為8的矩形.

(Ⅰ)求橢圓的方程;

(Ⅱ)過作直線交橢圓于,兩點(diǎn),若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高中隨機(jī)抽取部分高一學(xué)生調(diào)查其上學(xué)路上所需時間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中上學(xué)路上所需時間的范圍是,樣本數(shù)據(jù)分組為,,,,

(Ⅰ)求直方圖中的值;

(Ⅱ)如果上學(xué)路上所需時間不少于1小時的學(xué)生可申請?jiān)趯W(xué)校住宿,若招生1200名,請估計(jì)新生中有多少名學(xué)生可以申請住宿;

(Ⅲ)從學(xué)校的高一學(xué)生中任選4名學(xué)生,這4名學(xué)生中上學(xué)路上所需時間少于40分鐘的人數(shù)記為,求的分布列和數(shù)學(xué)期望.(以直方圖中頻率作為概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)試討論函數(shù)的導(dǎo)函數(shù)的零點(diǎn)個數(shù);

(2)若對任意的,關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案