【題目】已知橢圓:()的離心率為,設(shè)直線過橢圓的上頂點和右頂點,坐標(biāo)原點到直線的距離為.
(1)求橢圓的方程.
(2)過點且斜率不為零的直線交橢圓于,兩點,在軸的正半軸上是否存在定點,使得直線,的斜率之積為非零的常數(shù)?若存在,求出定點的坐標(biāo);若不存在,請說明理由.
【答案】(1)(2)存在,
【解析】
(1)設(shè)直線的方程為,由離心率和原點到直線的距離為,可得關(guān)于的方程組,解方程組得即可得答案;
(2)依題意可設(shè)直線的方程為,,,直線方程代入曲線方程,利用判別式大于0得的范圍,利用韋達(dá)定理可得與的關(guān)系,并假設(shè)存在點
使命題成立,利用斜率公式代入坐標(biāo)進(jìn)行計算,將問題轉(zhuǎn)化為恒成立問題,即可得答案.
(1)設(shè)橢圓半焦距為.根據(jù)題意得,橢圓離心率,即,
所以.①
因為直線過橢圓的上頂點和右頂點,
所以設(shè)直線的方程為,即.
又由點到直線的距離為,得.②
聯(lián)立①②解得,.所以橢圓的方程為.
(2)依題意可設(shè)直線的方程為,,.聯(lián)立得.所以,所以.
所以,,
則,.
假設(shè)存在定點(),使得直線,的斜率之積為非零常數(shù),
所以.
要使為非零常數(shù),當(dāng)且僅當(dāng)解得(負(fù)值舍去).
當(dāng)時,常數(shù)為.
所以軸的正半軸上存在定點,使得直線,的斜率之積為常數(shù).
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一汽車廠生產(chǎn)三類轎車,每類轎車均有舒適型和標(biāo)準(zhǔn)型兩種型號,某月的產(chǎn)量如表(單位:輛):
轎車 | 轎車 | 轎車 | |
舒適型 | 100 | 150 | |
標(biāo)準(zhǔn)型 | 300 | 450 | 600 |
按分層抽樣的方法在這個月生產(chǎn)的轎車中抽取50輛,其中有類轎車10輛.
(1)求的值;
(2)用隨機抽樣的方法從類舒適型轎車中抽取8輛,經(jīng)檢測它們的得分如下:4、8.6、9.2、9.6、8.7、9.3、9.0、8.2,把這8輛轎車的得分看作一個總體,從中任取一個數(shù),求該數(shù)與樣本平均數(shù)之差的絕對值不超過0.5的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】時值金秋十月,正是秋高氣爽,陽光明媚的美好時刻。復(fù)興中學(xué)一年一度的校運會正在密鑼緊鼓地籌備中,同學(xué)們也在熱切地期盼著,都想為校運會出一份力。小智同學(xué)則通過對學(xué)校有關(guān)部門的走訪,隨機地統(tǒng)計了過去許多年中的五個年份的校運會“參與”人數(shù)及相關(guān)數(shù)據(jù),并進(jìn)行分析,希望能為運動會組織者科學(xué)地安排提供參考。
附:①過去許多年來學(xué)校的學(xué)生數(shù)基本上穩(wěn)定在3500人左右;②“參與”人數(shù)是指運動員和志愿者,其余同學(xué)均為“啦啦隊員”,不計入其中;③用數(shù)字1、2、3、4、5表示小智同學(xué)統(tǒng)計的五個年份的年份數(shù),今年的年份數(shù)是6;
統(tǒng)計表(一)
年份數(shù)x | 1 | 2 | 3 | 4 | 5 |
“參與”人數(shù)(y千人) | 1.9 | 2.3 | 2.0 | 2.5 | 2.8 |
統(tǒng)計表(二)
高一(3)(4)班參加羽毛球比賽的情況:
男生 | 女生 | 小計 | |
參加(人數(shù)) | 26 | b | 50 |
不參加(人數(shù)) | c | 20 | |
小計 | 44 | 100 |
(1)請你與小智同學(xué)一起根據(jù)統(tǒng)計表(一)所給的數(shù)據(jù),求出“參與”人數(shù)y關(guān)于年份數(shù)x的線性回歸方程,并預(yù)估今年的校運會的“參與”人數(shù);
(2)學(xué)校命名“參與”人數(shù)占總?cè)藬?shù)的百分之八十及以上的年份為“體育活躍年”.如果該校每屆校運會的“參與”人數(shù)是互不影響的,且假定小智同學(xué)對今年校運會的“參與”人數(shù)的預(yù)估是正確的,并以這6個年份中的“體育活躍年”所占的比例作為任意一年是“體育活躍年”的概率,F(xiàn)從過去許多年中隨機抽取9年來研究,記這9年中“體活躍年”的個數(shù)為隨機變量,試求隨機變量的分布列、期望和方差;
(3)根據(jù)統(tǒng)計表(二),請問:你能否有超過60%的把握認(rèn)為“羽毛球運動”與“性別”有關(guān)?
參考公式和數(shù)據(jù)一:,,,
參考公式二:,其中.
參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 | |
0.455 | 0.708 | 1.323 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線:,(為參數(shù)),將曲線上的所有點的橫坐標(biāo)縮短為原來的,縱坐標(biāo)縮短為原來的后得到曲線,以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為。
(1)求曲線的極坐標(biāo)方程和直線l的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線交于不同的兩點A,B,點M為拋物線的焦點,求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】畫糖是一種以糖為材料在石板上進(jìn)行造型的民間藝術(shù),常見于公園與旅游景點.某師傅制作了一種新造型糖畫,為了進(jìn)行合理定價先進(jìn)性試銷售,其單價(元)與銷量(個)相關(guān)數(shù)據(jù)如下表:
(1)已知銷量與單價具有線性相關(guān)關(guān)系,求關(guān)于的線性相關(guān)方程;
(2)若該新造型糖畫每個的成本為元,要使得進(jìn)入售賣時利潤最大,請利用所求的線性相關(guān)關(guān)系確定單價應(yīng)該定為多少元?(結(jié)果保留到整數(shù))
參考公式:線性回歸方程中斜率和截距最小二乘法估計計算公式:
.參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】食品安全問題越來越引起人們的重視,農(nóng)藥、化肥的濫用對人民群眾的健康帶來一定的危害,為了給消費者帶來放心的蔬菜,某農(nóng)村合作社每年投入200萬元,搭建了甲、乙兩個無公害蔬菜大棚,每個大棚至少要投入20萬元,其中甲大棚種西紅柿,乙大棚種黃瓜,根據(jù)以往的種菜經(jīng)驗,發(fā)現(xiàn)種西紅柿的年收入種黃瓜的年收入與投入(單位:萬元)滿足.設(shè)甲大棚的投入為(單位:萬元),每年兩個大棚的總收益為(單位:萬元)
(1)求的值;
(2)試問如何安排甲、乙兩個大棚的投入,才能使總收益最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體ABCD中,以D為原點建立空間直角坐標(biāo)系,E為B的中點,F(xiàn)為的中點,則下列向量中,能作為平面AEF的法向量的是( )
A. (1,-2,4) B. (-4,1,-2)
C. (2,-2,1) D. (1,2,-2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,試判斷函數(shù)的極值情況,并說明理由;
(2)若有兩個極值點,.
①求實數(shù)的取值范圍;
②證明:.注:是自然對數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的多面體中,,且,四邊形為正方形,為等邊三角形,平面平面.
(1)求異面直線與所成角的余弦值;
(2)求二面角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com