精英家教網 > 高中數學 > 題目詳情

【題目】已知函數.

1)當時,試判斷函數的極值情況,并說明理由;

2)若有兩個極值點.

①求實數的取值范圍;

②證明:.注:是自然對數的底數)

【答案】1)函數無極值;(2)①;②證明見詳解

【解析】

1)把代入函數解析式,求出函數的導函數,把導函數二次求導,求出導函數的最大值,得到導函數的最大值小于,從而可得原函數在實數集上的減函數,進而可判斷函數的極值情況.

2)①把函數有兩個極值點轉化為其導函數有兩個零點,該函數先減后增有極小值,然后根據圖像的交點情況得到的范圍;②由是原函數的導函數的根,把代入導函數解析式,用表示,然后把的表達式中的替換,得到關于的函數式后再利用求導判斷單調性,從而得到要證的結論.

1)當時,

,

,

時,

時,

時,

函數上為增函數,在上為減函數,

,

恒成立,所以上為減函數,

故函數無極值.

2)①由,

所以,

有兩個極值點,則,是方程的兩根,

故方程有兩個根,,

又因為顯然不是該方程的根,所以方程,有兩個根,

,得,

時,單調遞減.

時,

時,,單調遞減.

時,,單調遞增,

要使方程有兩個根,需,

,

故實數的取值范圍為.

②證明:由,得

,

,

上單調遞減,

,即.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】關于不同的直線與不同的平面,有下列六個命題:

①若;

②若;

③若;

④若;

⑤若

⑥若;

其中正確命題的序號是__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓:()的離心率為,設直線過橢圓的上頂點和右頂點,坐標原點到直線的距離為.

1)求橢圓的方程.

2)過點且斜率不為零的直線交橢圓,兩點,在軸的正半軸上是否存在定點,使得直線,的斜率之積為非零的常數?若存在,求出定點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給出下列命題:

1)命題b24ac<0,則方程ax2+bx+c=0a≠0)無實根的否命題

2)命題“△ABC中,AB=BC=CA,那么△ABC為等邊三角形的逆命題

3)命題a>b>0,則>>0”的逆否命題

4m1,則mx22m+1x+m3)>0的解集為R”的逆命題

其中真命題的序號為__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,是邊長為2的正方形,平面平面,且是線段的中點,過作直線是直線上一動點.

1)求證:;

2)若直線上存在唯一一點使得直線與平面垂直,求此時二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,底面,,為棱的中點,為棱的動點.

1)求證:平面;

2)若二面角的余弦值為,求點的位置.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,其中

)求的單調區(qū)間;

)若在上存在,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】“工資條里顯紅利,個稅新政人民心”.隨著2019年新年鐘聲的敲響,我國自1980年以來,力度最大的一次個人所得稅(簡稱個稅)改革迎來了全面實施的階段.201911日實施的個稅新政主要內容包括:(1)個稅起征點為5000元;(2)每月應納稅所得額(含稅)=收入-個稅起征點-專項附加扣除;(3)專項附加扣除包括住房、子女教育和贍養(yǎng)老人等.

新舊個稅政策下每月應納稅所得額(含稅)計算方法及其對應的稅率表如下:

舊個稅稅率表(個稅起征點3500)

新個稅稅率表(個稅起征點5000)

繳稅級數

每月應納稅所得額(含稅)=收入-個稅起征點

稅率(%)

每月應納稅所得額(含稅)=收入-個稅起征點-專項附加扣除

稅率(%)

1

不超過1500元部分

3

不超過3000元部分

3

2

超過1500元至4500元部分

10

超過3000元至12000元部分

10

3

超過4500元至9000元的部分

20

超過12000元至25000元的部分

20

4

超過9000元至35000元的部分

25

超過25000元至35000元的部分

25

5

超過35000元至55000元部分

30

超過35000元至55000元部分

30

···

···

···

···

···

隨機抽取某市1000名同一收入層級的從業(yè)者的相關資料,經統(tǒng)計分析,預估他們2019年的人均月收入24000.統(tǒng)計資料還表明,他們均符合住房專項扣除;同時,他們每人至多只有一個符合子女教育扣除的孩子,并且他們之中既不符合子女教育扣除又不符合贍養(yǎng)老人扣除、只符合子女教育扣除但不符合贍養(yǎng)老人扣除、只符合贍養(yǎng)老人扣除但不符合子女教育扣除、即符合子女教育扣除又符合贍養(yǎng)老人扣除的人數之比是2:1:1:1;此外,他們均不符合其他專項附加扣除.新個稅政策下該市的專項附加扣除標準為:住房1000/,子女教育每孩1000/,贍養(yǎng)老人2000/月等。

假設該市該收入層級的從業(yè)者都獨自享受專項附加扣除,將預估的該市該收入層級的從業(yè)者的人均月收入視為其個人月收入.根據樣本估計總體的思想,解決如下問題:

1)設該市該收入層級的從業(yè)者2019年月繳個稅為,的分布列和期望;

2)根據新舊個稅方案,估計從20191月開始,經過多少個月,該市該收入層級的從業(yè)者各月少繳交的個稅之和就超過2019年的月收入?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲船在島的正南處,以4千米/時的速度向正北方向航行,千米,同時乙船自島出發(fā)以6千米/時向北偏東60°的方向駛去.當甲、乙兩船相距最近時,它們所航行的時間為(

A.B.C.D.2.15h

查看答案和解析>>

同步練習冊答案