精英家教網 > 高中數學 > 題目詳情

【題目】如圖,已知點,點均在圓上,且,過點的平行線分別交,兩點.

1)求點的軌跡方程;

2)過點的動直線與點的軌跡交于兩點.問是否存在常數,使得點為定值?若存在,求出的值;若不存在,說明理由.

【答案】1;(2)存在常數符合題意,理由詳見解析.

【解析】

1)由平面幾何的相關性質可得,則,即點的軌跡是以為焦點的橢圓,再求出橢圓的標準方程即可;

2)當直線的斜率存在時,設,,聯立直線方程與橢圓方程,消元列出韋達定理,則代入計算可得的值,再計算斜率不存在時的值,即可得解;

解:(1)由,得,

,得,所以.

,知,

所以,即

所以,

所以點的軌跡是以為焦點的橢圓.

這里,,所以,

則點的軌跡方程為:.

2)當直線軸不垂直時,設,,,

聯立

其判別式

所以,

,

所以當時,,

此時為定值.

當直線的斜率不存在時,.

綜上,存在常數,使得為定值img src="http://thumb.zyjl.cn/questionBank/Upload/2020/11/26/22/0c62e4d8/SYS202011262207475451781454_DA/SYS202011262207475451781454_DA.037.png" width="22" height="19" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知斜率為1的直線與橢圓交于,兩點,且線段的中點為,橢圓的上頂點為.

(1)求橢圓的離心率;

(2)設直線與橢圓交于兩點,若直線的斜率之和為2,證明:過定點.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點為拋物線的焦點,點在拋物線上,過點的直線交拋物線兩點,線段的中點為,且滿足

1)若直線的斜率為1,求點的坐標;

2)若,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)求函數的極值;

(2)若函數上是單調遞增函數,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)當時,求的單調區(qū)間;

2)若處取得極大值,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲和乙兩個人計劃周末參加志愿者活動,約定在周日早上8:008:30之間到某公交站搭乘公交車一起去,已知在這段時間內,共有班公交車到達該站,到站的時間分別為8:05,8:15,8:30,如果他們約定見車就搭乘,則甲和乙兩個人恰好能搭乘同一班公交車去的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的左、右焦點,,是橢圓上的動點,且面積的最大值為.

1)求橢圓的方程及離心率;

2)若是橢圓的左、右頂點,直線與橢圓在點處的切線交于點,當點在橢圓上運動時,求證:以為直徑的圓與直線恒相切.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,為坐標原點,橢圓的左,右焦點分別為,離心率為,雙曲線的左,右焦點分別為,,離心率為,已知,

1)求,的方程;

2)過的不垂直于軸的弦,為弦的中點,當直線交于,兩點時,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的兩個焦點為,,焦距為,直線:與橢圓相交于,兩點,為弦的中點.

1)求橢圓的標準方程;

2)若直線:與橢圓相交于不同的兩點,,,若為坐標原點),求的取值范圍.

查看答案和解析>>

同步練習冊答案